算法导论 第三章 函数的增长,3.1练习个人解答(Sor)

本文详细解答了《算法导论》第三章中关于函数增长的部分习题,包括最大值函数的渐近表示、指数函数的性质、O(n^2)表述的意义、2的幂次比较以及o与ω集合的交集问题。通过证明和解释,阐述了算法复杂度分析的关键概念。
摘要由CSDN通过智能技术生成

3.1-1 假设f(n)与g(n)都是渐近非负函数。使用Θ

记号的基本定义来证明max(f(n),g(n)) = Θ(f(n)+g(n))。

证:不妨假设max(f(n),g(n)) = f(n),则0 ≤ g(n)/f(n) ≤ 1

设有正常量c1,c2,n0,使得所有对n ≥ n0, 有

0 ≤ c1*f(n) ≤ f(n) + g(n) ≤ c2*f(n)

 

解得 c1 ≤ 1 + g(n)/f(n), c2 ≥ 1 + g(n)/f(n)

可取 c1 = 1, c2 = 2 , 此时 n0 ≥ 1 即可

 

3.1-2 证明: 对于任意实常量a和b,其中b>0,有(n+a)^b = Θ(n^b)

证:(n+a)^b的最高次数项为 n^b,根据直觉可得出结论,下面给出具体过程

a,b为任意实常量,设f(n) =

SOR(Successive Over-Relaxation)迭代法是一种求解线性方程组的迭代方法,其基本思想是在 Jacobi 迭代法的基础上引入松弛因子进行加速。在MATLAB中,可以通过编写函数来实现SOR迭代法。 下面是一个简单的实现SOR迭代法的MATLAB函数: ``` function [x,iter]=sor(A,b,w,tol,maxit) % SOR迭代法求解Ax=b % 输入:A-系数矩阵,b-常数向量,w-松弛因子,tol-误差容限,maxit-最大迭代次数 % 输出:x-方程的解,iter-迭代次数 n=length(b); x=zeros(n,1); iter=0; err=tol+1; while (err>tol && iter<maxit) iter=iter+1; for i=1:n s=0; for j=1:n if j~=i s=s+A(i,j)*x(j); end end x(i)=(1-w)*x(i)+w*(b(i)-s)/A(i,i); end err=norm(A*x-b); end ``` 其中,输入参数包括系数矩阵 A,常数向量 b,松弛因子 w,误差容限 tol 和最大迭代次数 maxit。输出结果包括方程的解 x 和迭代次数 iter。 在函数中,迭代过程采用了一个 for 循环来计算每个未知数的值。在计算每个未知数的值时,需要用到该未知数的系数和其他已知未知数的值。在计算过程中,需要将其他已知未知数的值乘以其系数相加,最后再除以该未知数的系数,并乘上松弛因子 w。 在主程序中,可以通过调用该函数来求解线性方程组。例如: ``` A=[4 -1 0 0; -1 4 -1 0; 0 -1 4 -1; 0 0 -1 3]; b=[15; 10; 10; 10]; w=1.25; tol=1e-6; maxit=1000; [x,iter]=sor(A,b,w,tol,maxit); disp(['解为:']); disp(x); disp(['迭代次数为:']); disp(iter); ``` 该程序通过调用 sor 函数来求解系数矩阵 A 和常数向量 b 所表示的线性方程组,其中松弛因子 w 为 1.25,误差容限 tol 为 1e-6,最大迭代次数 maxit 为 1000。程序输出结果为方程的解 x 和迭代次数 iter。 需要注意的是,SOR迭代法的收敛性与松弛因子 w 的选择有关。一般来说,对于不同的线性方程组,需要根据实际情况选择一个合适的松弛因子 w,以保证迭代过程的收敛性和效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值