Machine Learning---LMS 算法

LMS算法详解

Machine Learning---LMS 算法

引言

简单的感知器学习算法(《Machine Learning---感知器学习算法》)会将真个集合正确分类后,才会停止,显然当测试数据多的时候,这种算法会变得迟钝。所以这里,引入一个理念,最小均方算法(Least Mean Square)。

一、LMS算法基本介绍

1.历史

LMS算法首先由Bernard Widrow和Marcian E. Hoff提出,被用于分类计算。大大降低了分类算法的复杂度。LMS算法是一种梯度下降法(Gradient Descent)。

对于LMS的数学证明,这里暂时不做介绍。

所以下面提到的公式,也只做简单性说明,请见谅。

2.均方差

均方差(Mean Square Error)这个概念我就用下面这个公式进行介绍。

 公式(1)

上面的公式1中的R表示正确的预期结果,C表示当前计算结果。这个便是LMS算法中终止算法的核心公式。

对于如何得到“当前计算结果C”,按照下面这个公式进行计算

   公式(2)

对于该公式,笔者在《Machine Learning---感知器学习算法》中有介绍。这里就只做简单解释:i表示输入值,W表示输入端所对应的权值,对这两个值进行乘法运算后,并求和。对于求和的结果可以进行一定处理,比如大于0的O便为1;否则就为-1。

3.权值调整公式

用于调整输入端的权值。

 公式(3)

在算法运行时,不断利用公式2进行输入端的权值调整,使权值越来越接近正确值。其中w便是输入端所对应的权值,I便是输入值, 便是学习参数,一般为小于1的正数。

4.算法流程

下面介绍一下LMS算法的基本流程。

1.     初始化工作,为各个输入端的权值覆上随机初始值;

2.     随机挑选一组训练数据,进行计算得出计算结构C;

3.     利用公式3对每一个输入端的权值进行调整;

4.     利用公式1计算出均方差MSE;

5.     对均方差进行判断,如果大于某一个给定值,回到步骤2,继续算法;如果小于给定值,就输出正确权值,并结束算法。

二、算法实现

以下就给出一段LMS算法的代码。

const unsigned int nTests   =4;
const unsigned int nInputs  =2;
const double rho =0.005;
 
struct lms_testdata
{
    doubleinputs[nInputs];
    doubleoutput;
};
 
double compute_output(constdouble * inputs,double* weights)
{
    double sum =0.0;
    for (int i = 0 ; i < nInputs; ++i)
    {
        sum += weights[i]*inputs[i];
    }
    //bias
    sum += weights[nInputs]*1.0;
    return sum;
}
//计算均方差
double caculate_mse(constlms_testdata * testdata,double * weights)
{
    double sum =0.0;
    for (int i = 0 ; i < nTests ; ++i)
    {
        sum += pow(testdata[i].output -compute_output(testdata[i].inputs,weights),2);
    }
    return sum/(double)nTests;
}
//对计算所得值,进行分类
int classify_output(doubleoutput)
{
    if(output> 0.0)
        return1;
    else
        return-1;
}
int _tmain(int argc,_TCHAR* argv[])
{
    lms_testdata testdata[nTests] = {
        {-1.0,-1.0, -1.0},
        {-1.0, 1.0, -1.0},
        { 1.0,-1.0, -1.0},
        { 1.0, 1.0,  1.0}
    };
    doubleweights[nInputs + 1] = {0.0};
    while(caculate_mse(testdata,weights)> 0.26)//计算均方差,如果大于给定值,算法继续
    {
        intiTest = rand()%nTests;//随机选择一组数据
        doubleoutput = compute_output(testdata[iTest].inputs,weights);
        doubleerr = testdata[iTest].output - output;
        //调整输入端的权值
        for (int i = 0 ; i < nInputs ; ++i)
        {
            weights[i] = weights[i] + rho * err* testdata[iTest].inputs[i];
        }
        weights[nInputs] = weights[nInputs] +rho * err;
        cout<<"mse:"<<caculate_mse(testdata,weights)<<endl;
    }
 
    for(int w = 0 ; w < nInputs + 1 ; ++w)
    {
        cout<<"weight"<<w<<":"<<weights[w]<<endl;
    }
    cout<<"\n";
    for (int i = 0 ;i < nTests ; ++i)
    {
        cout<<"rightresult:êo"<<testdata[i].output<<"\t";
        cout<<"caculateresult:" << classify_output(compute_output(testdata[i].inputs,weights))<<endl;
    }
    //
    char temp ;
    cin>>temp;
    return 0;
}

三、总结

LMS算法的数学方面的说明比较麻烦,所以笔者想之后单独写一篇。

如果有兴趣的可以去看维基百科关于LMS算法的说明,这篇暂时只做编程上的简单介绍。


由于笔者不是专门研究人工智能方面,所以在写这些文章的时候,肯定会有一些错误,也请谅解,上面介绍中有什么错误或者不当地方,敬请指出,不甚欢迎。

如果有兴趣的可以留言,一起交流一下算法学习的心得。


声明:本文章是笔者整理资料所得原创文章,如转载需注明出处,谢谢。






 

在探讨多模态人工智能推荐系统(multi-modal AI recommendation systems)在自适应学习环境(adaptive learning environments)中的应用时,可以从以下几个方面进行深入分析: ### 1. 多模态数据的整合与处理 多模态AI推荐系统的核心在于其能够处理多种类型的数据,包括文本、图像、音频、视频等。这些数据可以来自学习者的交互行为、学习内容、评估结果等多个渠道。通过整合这些异构数据,系统能够更全面地理解学习者的需求偏好。例如,通过自然语言处理技术分析学习者在论坛中的讨论内容,结合其观看视频的时间戳互动模式,可以推断出其学习兴趣难点[^1]。 ### 2. 个性化学习路径的生成 自适应学习环境的一个关键目标是为每个学习者提供个性化的学习路径。多模态AI推荐系统可以通过分析学习者的多模态数据,生成定制化的学习资源推荐。例如,系统可以根据学习者的学习风格(视觉型、听觉型等)推荐相应的学习材料,或者根据其历史表现推荐适合的学习任务练习[^1]。 ### 3. 学习者建模与动态更新 多模态AI推荐系统能够通过持续收集分析学习者的行为数据,动态更新学习者模型。这种模型不仅包括学习者的知识水平,还包括其兴趣、动机学习习惯等非认知因素。例如,系统可以通过分析学习者在不同时间段的活跃度参与度,预测其最佳学习时间,并在适当的时间推送学习内容,以提高学习效率[^1]。 ### 4. 实时反馈与干预机制 多模态AI推荐系统还可以提供实时反馈干预机制,帮助学习者及时调整学习策略。例如,如果系统检测到学习者在某个知识点上花费了过多时间但仍未掌握,可以自动推荐相关的补充材料或提示,甚至建议学习者与教师或其他学习者进行互动[^1]。 ### 5. 隐私与伦理问题 尽管多模态AI推荐系统在自适应学习环境中具有巨大的潜力,但也面临着隐私伦理方面的挑战。由于系统需要处理大量的个人数据,因此必须确保数据的安全性学习者的隐私权。此外,还需要考虑算法的透明性公平性,避免因数据偏差导致的不公平推荐[^1]。 ### 示例代码:多模态数据处理的简单实现 以下是一个简单的Python代码示例,展示了如何使用多模态数据(文本图像)来生成学习资源推荐: ```python import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import PCA from sklearn.metrics.pairwise import cosine_similarity # 假设我们有以下学习资源数据 text_data = [ "Introduction to Machine Learning", "Advanced Deep Learning Techniques", "Data Visualization with Python" ] image_data = np.random.rand(3, 10) # 假设每个图像用10维特征向量表示 # 文本数据的TF-IDF向量化 vectorizer = TfidfVectorizer() text_features = vectorizer.fit_transform(text_data).toarray() # 合并文本图像特征 combined_features = np.hstack((text_features, image_data)) # 使用PCA降维 pca = PCA(n_components=5) reduced_features = pca.fit_transform(combined_features) # 计算相似度 similarity_matrix = cosine_similarity(reduced_features) # 推荐最相似的学习资源 def recommend_resources(query_index, similarity_matrix, n_recommendations=2): similar_indices = np.argsort(similarity_matrix[query_index])[::-1][1:n_recommendations+1] return [text_data[i] for i in similar_indices] # 示例:推荐与第一个学习资源相似的资源 recommendations = recommend_resources(0, similarity_matrix) print("Recommended resources:", recommendations) ``` ### 相关问题 1. 多模态AI推荐系统如何处理不同模态数据之间的对齐问题? 2. 在自适应学习环境中,如何评估多模态AI推荐系统的推荐效果? 3. 多模态AI推荐系统在教育领域中可能面临哪些技术挑战? 4. 如何确保多模态AI推荐系统在自适应学习环境中的公平性透明性? 5. 多模态AI推荐系统如何与现有的学习管理系统(LMS)集成?
评论 10
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值