Matlab自适应滤波算法 LMS小白通俗易懂版

这篇博客介绍了如何在Matlab中实现LMS和NLMS自适应滤波算法。首先讲解了LMS算法的基本原理,包括初始化、误差计算和权重更新步骤。接着通过生成理想信号、随机噪声以及含噪信号,演示了算法的具体实现过程。最后,展示了去噪后的信号和误差信号的图形输出,并提到在实际应用中可能涉及的MSE指标和蒙特卡洛实验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matlab自适应滤波算法

在学习自适应算法的过程中,入门阶段,学习了LMS算法、NLMS算法,并用Matlab对算法进行了复现。

LMS

最小均方(LMS)是一种搜索算法,它通过对目标函数进行适当修改,以便简化梯度向量的计算,由于其计算简单,LMS算法及与之相关的其他算法,已经广泛应用于自适应滤波的各种的应用中。

先写一下官方给的算法公式


I n i t i a l i z e : Initialize: Initialize:
x ( 0 ) = w ( 0 ) = [ 0   0   0   ⋅ ⋅ ⋅ ⋅ ⋅   0   0   0 ] T x(0)=w(0)=[0\,0\,0 \,·····\,0\,0\,0]^T x(0)=w(0)=[000⋅⋅⋅⋅⋅000]T

f o r    i = 1 : k for \,\,i = 1:k fori=1:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值