一元隐函数及其求导

在说到隐函数(Implicit function)之前,先回想一下显函数(Explicit function).

0.显函数(Explicit function)

解析式中明显地用一个变量的代数式表示另一个变量时,称为显函数。即总能写成 y = f ( x ) y=f(x) y=f(x)的形式。

1.隐函数(Implicit function)

如果方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0能确定 y y y x x x的函数,那么称这种方式表示的函数是隐函数。

一般来说如果能将一个隐函数转换成 y = f ( x ) y=f(x) y=f(x)的形式,则称这个过程叫做隐函数的显化,如 x 2 + y 2 = 1 , x ∈ [ 0 , 1 ] x^2+y^2=1,x\in[0,1] x2+y2=1,x[0,1]则可以显化为 y = 1 − x 2 y=\sqrt{1-x^2} y=1x2 ,但在绝大数情况下隐函数是不能显化,或者难以显化的,如 x 3 + y 3 = 6 x y x^3+y^3=6xy x3+y3=6xy,其形状如下:

这里写图片描述

所以说,隐函数的数量是远远多于显函数的,因为每一个显函数都能隐化,但不是每一个隐函数都能显化。


2.隐函数求导(Implicit Differentiation)

从上一点我们可以知道,一般来讲隐函数都代表这一类曲线,如: x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2表示一个圆, x 2 a 2 − y 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2b2y2=1表示双曲线(hyperbolic)。而我们往往需要求这些曲线 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0在某一点处的切线和法线。那么此时,就需要求这个方程所确定的函数 y = y ( x ) y=y(x) y=y(x)的导数 d y d x \frac{dy}{dx} dxdy

但通常情况下,不能显化的隐函数该如何求导呢?

2.1直接求导法

方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0两端对自变量 x x x求导,将式子中的 y y y视为 y ( x ) y(x) y(x),然后化简解出 d y d x \frac{dy}{dx} dxdy即可。

例如,设方程 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1确定了函数 y = y ( x ) , ( y > 0 ) y=y(x),(y>0) y=y(x),(y>0),求导数 d y d x \frac{dy}{dx} dxdy

\begin{align*}
(x2+y2)’&=(1)’\dots 对方程两边同时求导 \ \
(x2)’+(y2)’&=0 \ \
2x+2y\cdot y’&=0\cdots 复合函数求导\\
\implies y’&=-\frac{x}{y}
\end{align*}

2.2公式求导法

假设隐函数 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0,其中 y = y ( x ) y=y(x) y=y(x),则有 F [ x , y ( x ) ] ≡ 0 F[x,y(x)]\equiv0 F[x,y(x)]0,例如( F ( x , y ) = x 2 + y 2 − 1 = 0 F(x,y)=x^2+y^2-1=0 F(x,y)=x2+y21=0其中, y = ± 1 − x 2 y=\pm\sqrt{1-x^2} y=±1x2 ,则有 F [ x , y ( x ) ] ≡ 0 F[x,y(x)]\equiv0 F[x,y(x)]0)

下面对 F [ x , y ( x ) ] ≡ 0 F[x,y(x)]\equiv0 F[x,y(x)]0两边同时对 x x x求导

\begin{align*}
{F[x,y(x)]}’&\equiv0 \ \
F_x\cdot 1+F_y\cdot \frac{dy}{dx}&\equiv0 \ \
\implies \color{red}{\frac{dy}{dx}=-\frac{F_x}{F_y}(F_y\neq0)}
\end{align*}

例如, y 5 + 2 y − x − 3 x 7 = 0 y^5+2y-x-3x^7=0 y5+2yx3x7=0,求 d y d x \frac{dy}{dx} dxdy

易知, F ( x , y ) = y 5 + 2 y − x − 3 x 7 F(x,y)=y^5+2y-x-3x^7 F(x,y)=y5+2yx3x7 ,且有:

F x = − 1 − 21 x 6 ; F y = 5 y 4 + 2    ⟹    d y d x = − F x F y = 1 + 21 x 6 5 y 4 + 2 F_x=-1-21x^6;F_y=5y^4+2\implies\frac{dy}{dx}=-\frac{F_x}{F_y}=\frac{1+21x^6}{5y^4+2} Fx=121x6;Fy=5y4+2dxdy=FyFx=5y4+21+21x6

感谢徐小湛老师的《高等数学》视频

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值