在说到隐函数(Implicit function)之前,先回想一下显函数(Explicit function).
0.显函数(Explicit function)
解析式中明显地用一个变量的代数式表示另一个变量时,称为显函数。即总能写成 y = f ( x ) y=f(x) y=f(x)的形式。
1.隐函数(Implicit function)
如果方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0能确定 y y y是 x x x的函数,那么称这种方式表示的函数是隐函数。
一般来说如果能将一个隐函数转换成 y = f ( x ) y=f(x) y=f(x)的形式,则称这个过程叫做隐函数的显化,如 x 2 + y 2 = 1 , x ∈ [ 0 , 1 ] x^2+y^2=1,x\in[0,1] x2+y2=1,x∈[0,1]则可以显化为 y = 1 − x 2 y=\sqrt{1-x^2} y=1−x2,但在绝大数情况下隐函数是不能显化,或者难以显化的,如 x 3 + y 3 = 6 x y x^3+y^3=6xy x3+y3=6xy,其形状如下:
所以说,隐函数的数量是远远多于显函数的,因为每一个显函数都能隐化,但不是每一个隐函数都能显化。
2.隐函数求导(Implicit Differentiation)
从上一点我们可以知道,一般来讲隐函数都代表这一类曲线,如: x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2表示一个圆, x 2 a 2 − y 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2−b2y2=1表示双曲线(hyperbolic)。而我们往往需要求这些曲线 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0在某一点处的切线和法线。那么此时,就需要求这个方程所确定的函数 y = y ( x ) y=y(x) y=y(x)的导数 d y d x \frac{dy}{dx} dxdy。
但通常情况下,不能显化的隐函数该如何求导呢?
2.1直接求导法
方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0两端对自变量 x x x求导,将式子中的 y y y视为 y ( x ) y(x) y(x),然后化简解出 d y d x \frac{dy}{dx} dxdy即可。
例如,设方程 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1确定了函数 y = y ( x ) , ( y > 0 ) y=y(x),(y>0) y=y(x),(y>0),求导数 d y d x \frac{dy}{dx} dxdy
\begin{align*}
(x2+y2)’&=(1)’\dots 对方程两边同时求导 \ \
(x2)’+(y2)’&=0 \ \
2x+2y\cdot y’&=0\cdots 复合函数求导\\
\implies y’&=-\frac{x}{y}
\end{align*}
2.2公式求导法
假设隐函数 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0,其中 y = y ( x ) y=y(x) y=y(x),则有 F [ x , y ( x ) ] ≡ 0 F[x,y(x)]\equiv0 F[x,y(x)]≡0,例如( F ( x , y ) = x 2 + y 2 − 1 = 0 F(x,y)=x^2+y^2-1=0 F(x,y)=x2+y2−1=0其中, y = ± 1 − x 2 y=\pm\sqrt{1-x^2} y=±1−x2,则有 F [ x , y ( x ) ] ≡ 0 F[x,y(x)]\equiv0 F[x,y(x)]≡0)
下面对 F [ x , y ( x ) ] ≡ 0 F[x,y(x)]\equiv0 F[x,y(x)]≡0两边同时对 x x x求导
\begin{align*}
{F[x,y(x)]}’&\equiv0 \ \
F_x\cdot 1+F_y\cdot \frac{dy}{dx}&\equiv0 \ \
\implies \color{red}{\frac{dy}{dx}=-\frac{F_x}{F_y}(F_y\neq0)}
\end{align*}
例如, y 5 + 2 y − x − 3 x 7 = 0 y^5+2y-x-3x^7=0 y5+2y−x−3x7=0,求 d y d x \frac{dy}{dx} dxdy
易知, F ( x , y ) = y 5 + 2 y − x − 3 x 7 F(x,y)=y^5+2y-x-3x^7 F(x,y)=y5+2y−x−3x7 ,且有:
F x = − 1 − 21 x 6 ; F y = 5 y 4 + 2 ⟹ d y d x = − F x F y = 1 + 21 x 6 5 y 4 + 2 F_x=-1-21x^6;F_y=5y^4+2\implies\frac{dy}{dx}=-\frac{F_x}{F_y}=\frac{1+21x^6}{5y^4+2} Fx=−1−21x6;Fy=5y4+2⟹dxdy=−FyFx=5y4+21+21x6
感谢徐小湛老师的《高等数学》视频
