opencv 金字塔图像分割

标签: cdst存储
18876人阅读 评论(19) 收藏 举报
分类:

opencv中有封装好的cvPyrSegmentation函数,参数解释如下:

PyrSegmentation
用金字塔实现图像分割

void cvPyrSegmentation( IplImage* src, IplImage* dst,
CvMemStorage* storage, CvSeq** comp,
int level, double threshold1, double threshold2 );
src
输入图像.
dst
输出图像.
storage
Storage: 存储连通部件的序列结果
comp
分割部件的输出序列指针 components.
level
建立金字塔的最大层数

threshold1
建立连接的错误阈值
threshold2
分割簇的错误阈值
函数 cvPyrSegmentation 实现了金字塔方法的图像分割。金字塔建立到 level 指定的最大层数。如果 p(c(a),c(b))<threshold1,则在层 i 的象素点 a 和它的相邻层的父亲象素 b 之间的连接被建立起来,

定义好连接部件后,它们被加入到某些簇中。如果p(c(A),c(B))<threshold2,则任何两个分割 A 和 B 属于同一簇。


如果输入图像只有一个通道,那么

p(c1,c2)=|c1-c2|.
如果输入图像有单个通道(红、绿、兰),那幺

p(c1,c2)=0,3·(c1r-c2r)+0,59·(c1g-c2g)+0,11·(c1b-c2b) .
每一个簇可以有多个连接部件。图像 src 和 dst 应该是 8-比特、单通道 或 3-通道图像,且大小一样



Threshold1,Threshold2的解读:

看到别人博客里有人在问这两个参数的区别,其实就如上面黄色底纹文字所说,

金字塔分割先通过p(c(a),c(b))<threshold1在像素a,b...中找连通域,也就是所谓的连接部件A,B...

第二步通过p(c(A),c(B))<threshold2判断两个联通与是否属于同一个簇,簇即使我们最后得到的分割结果


例程:

void ON_SEGMENT(int a)
{   
	cvPyrSegmentation(images0, images1, storage, &comp, 
		level, threshold1+1, threshold2+1);
	cvShowImage("Segmentation", images1);
}

void CCVMFCView::OnPyrSegmentation()
{
	images[0] = cvCloneImage(workImg);
	cvFlip(images[0]);

	cvNamedWindow("Segmentation", 1);

	storage = cvCreateMemStorage ( block_size );

	images[0]->width &= -(1<<level);
	images[0]->height &= -(1<<level);

	images0 = cvCloneImage( images[0] );
	images1 = cvCloneImage( images[0] );
	// 对彩色图像进行分割
	l = 1;
	threshold1 =255;
	threshold2 =30;


	sthreshold1 = cvCreateTrackbar("Threshold1", "Segmentation", 
		&threshold1, 255, ON_SEGMENT);
	sthreshold2 = cvCreateTrackbar("Threshold2", "Segmentation",   
		&threshold2, 255,ON_SEGMENT);

	ON_SEGMENT(1);

	cvWaitKey(0);
	cvDestroyWindow( "Segmentation" ); 
	cvFlip(images1);

	images1->width = workImg->width;
	images1->height = workImg->height;

	cvReleaseMemStorage(&storage );
	cvReleaseImage(&images[0]);
	cvReleaseImage(&images0);

	m_dibFlag=imageReplace(images1,&workImg); 
	m_ImageType=1;
	Invalidate();
}

金字塔图像分割结果:





9
1

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:7670446次
    • 积分:51815
    • 等级:
    • 排名:第55名
    • 原创:484篇
    • 转载:36篇
    • 译文:1篇
    • 评论:4674条
    博主描述
    百度深度学习实验室RD,关注计算机视觉,机器学习,算法研究,人工智能, 移动互联网等学科和产业,希望结识更多同道中人。
    新浪微博:Rachel____Zhang

    文章分类
    最新评论