给出从不同视角拍摄的,描述同一个场景的一系列图片,bundleadjustment可以根据所有点在图像中的投影作为标准,同时提炼出描述场景结构的3D点坐标、相对运动参数和相机的光学参数。
通常在每个基于feature的3D场景重建算法中都要用到BundleAdjustment,它是基于3D结构和视角参数(即相机位置,朝向,固有标定和径向畸变)的优化问题,在假定所获得的图像特征中有一些noise的基础上获得最佳重构效果:如果图像featureerror服从标准高斯分布,那么BundleAdjustment就基于最大似然估计。BundleAdjustment的名字由来于每个3D

Bundle Adjustment是一种用于优化3D场景重建的算法,它结合3D点坐标、相机参数和视角信息,通过最小化图像特征误差实现最佳重构。该算法源于摄影学,广泛应用于计算机视觉中,尤其在处理径向畸变和非线性最小二乘法的优化问题上。通过迭代,Bundle Adjustment能有效调整图像中观测点和预测点的匹配,即使在特征点丢失的情况下也能保持鲁棒性。
最低0.47元/天 解锁文章
6万+





