人工智能基础概念

原创 2017年01月04日 21:02:34

1.背景

人工智能涉及的内容非常广泛,从数学到计算机科学,有很多的基础知识需要储备,之前打算阅读一些人工智能方面的书籍,总感觉比较吃力,这里会将一些人工智能方面的基础知识做一个总结梳理。

2.基础概念

1)人工智能

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作,比如语音识别、图像识别,甚至象棋、围棋等。人工智能最近这几年发展非常迅速,谷歌的人工智能机器人AlphaGo轻松击败人类九段围棋高手,而且谷歌开源了其人工智能平台。像Fackbook,IBM等科技公司纷纷大力发展人工智能领域在自动驾驶、图像识别、语音识别等领域。

2)人工神经网络

人工智能的实现,很大一部分是基于人工神经网络。人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特点。误差反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理 论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许 多领域都有着广泛的应用前景。

3)BP神经网络

BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

4)梯度下降法

梯度下降法是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。

函数的梯度是一个函数变化的速率,这里的负梯度方向搜索即向着梯度越来越小的方向搜索,这里涉及到一些高等数据的基础知识,这里有一篇博客介绍得比较详细:

http://deepfuture.iteye.com/blog/1593259

5)卷积神经网络

卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。

卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面,一方面它的神经元间的连接是非全连接的, 另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。它的非全连接和权值共享的网络结构使之更类似于生物 神经网络,降低了网络模型的复杂度(对于很难学习的深层结构来说,这是非常重要的),减少了权值的数量。

回想一下BP神经网络。BP网络每一层节点是一个线性的一维排列状态,层与层的网络节点之间是全连接的。这样设想一下,如果BP网络中层与层之间的节点连接不再是全连接,而是局部连接的。这样,就是一种最简单的一维卷积网络。如果我们把上述这个思路扩展到二维,这就是我们在大多数参考资料上看到的卷积神经网络。


6)机器学习

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

7)深度学习

深度学习(英语:deep learning)是机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。 深度学习是机器学习中表征学习(英语:learning representation)方法的一类。一个观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更加容易地从实例中学习任务(例如,人脸识别或面部表情识别)。深度学习的好处之一是将用非监督式或半监督式(英语:Semi-supervised learning)的特征学习(英语:Feature learning)和分层特征提取的高效算法来替代手工获取特征(英语:Feature (machine learning))。

3.总结

相关学习资料:

1)深度学习笔记整理

http://blog.csdn.net/zouxy09/article/details/8775360

2)深度学习

http://blog.csdn.net/abcjennifer/article/details/7826917

3)开源机器学习库

http://www.open-open.com/lib/view/open1364432241437.html


相关文章推荐

学习人工智能AI需要哪些最基础的知识?

人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“...

人工智能学习笔记-基本概念

前段时间看了不少关于人工智能方面的书籍博客和论坛,深深觉得了人工智能是个大坑,里面有太多的知识点和学科,要想深入绝非易事,于是萌发了自己写一些博客把自己的学习历程和一些知识点笔记都记录下来的想法,给自...

初学者如何从零开始学习人工智能?看完你就懂了

链接:oschina.net/news/78629/beginners-how-to-learn-from-zero-artificial-intelligence 此文是想要进...

连“霍金”都想学习的“人工智能”---【自己动手写神经网络】小白入门连载开始了(1)

人工智能,简单来说,就是让机器人可以代替人!!这可以吗?机器始终是机器,但如果机器有了神经网络,那机器人就是人!!!霍金说,未来的人工智能可能毁灭人类!...

从入门到研究,人工智能领域最值得一读的20份资料

人工智能正在我们人类的生活中发挥越来越重要的价值——它们正在接管我们的工作、帮助我们更高效更安全地生产、甚至改变我们生存与存在的方式。对我们人类来说,理解这种前所未有的改变是非常重要的:人工智能是什么...
  • roslei
  • roslei
  • 2016年12月06日 17:42
  • 1507

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

人工智能----知识与知识表示

人工智能----知识与知识表示               人类的智能活动过程主要是一个获得并运用知识的过程,知识是智能的基础,知识是需要用适当的模式表示出来才能存储到计算机中去。  一、...

一种实现人工智能程序自进化的概念原理

本文主要论述六点:         1、能自我学习、自我控制、自我进化的信息处理控制能力就叫智能;         2、实现人工智能程序自进化的模式是程序自己修改自己的自循环;         3、智...
  • liron71
  • liron71
  • 2017年04月01日 13:53
  • 23989

人工智能+概念高架路,能否缓解城市交通拥堵问题?

城市道路拥堵,已经成为制约城市发展的最大问题之一。对于这一点,相信每个人都深有体会。 但如何才能缓解乃至彻底解决交通拥堵问题呢?似乎一直没有找到有效的方法。 如今,人工智能技术快速发展,那么,如果...

小强学AI之 - 概念(人工智能 vs 机器学习 vs 深度学习)

初入AI知识领域,常会被下面的这几个术语所迷惑: 人工智能(AI - Artificial Intelligenc) 机器学习(ML - Machine Learning) 深度学习(DL - ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:人工智能基础概念
举报原因:
原因补充:

(最多只允许输入30个字)