识别任务中混淆矩阵(Confusion Matrix)用于评价算法好坏的指标。下图是一个二分类问题的混淆矩阵:
TP:正确肯定——实际是正例,识别为正例
FN:错误否定(漏报)——实际是正例,却识别成了负例
FP:错误肯定(误报)——实际是负例,却识别成了正例
识别任务中混淆矩阵(Confusion Matrix)用于评价算法好坏的指标。下图是一个二分类问题的混淆矩阵:
TP:正确肯定——实际是正例,识别为正例
FN:错误否定(漏报)——实际是正例,却识别成了负例
FP:错误肯定(误报)——实际是负例,却识别成了正例