基于混淆矩阵的评价指标

混淆矩阵是评估分类算法性能的重要工具,包括TP、FN、FP和TN。准确率和误分率是基本评价指标,Recall和Precision关注正样本的识别,ROC曲线通过AUC值评估模型优劣,FAR和FRR则用于衡量误报和拒真率。
摘要由CSDN通过智能技术生成


识别任务中混淆矩阵(Confusion Matrix用于评价算法好坏的指标。下图是一个二分类问题的混淆矩阵:

TP正确肯定——实际是正例,识别为正例

FN错误否定(漏报)——实际是正例,却识别成了负例

FP错误肯定(误报)——实际是负例,却识别成了正例

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值