机器学习的技术栈及应用实例脑洞

本文介绍了机器学习技术栈,包括基础技能、数学知识、常用库和算法,以及具体的项目实例,如人脸识别和个性化推荐。建议从基础学习,如斯坦福的机器学习课程,并探索各种职位需求和商业机会。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前写了一篇入门级的学习列表: 简单粗暴地入门机器学习

好多小伙伴觉得不太过瘾,今天补充一些脑洞!

本文结构:

  • 机器学习技术栈
  • 职位
  • 项目实例

1. 机器学习技术栈

去知乎上可以搜到很多推荐的学习路线,问题就是太多了,我就先列出一些必需的知识和项目方向,学习还是要一步一步积累的。

需要的基础技能:
  • Various level of math, including probability, statistics, algebra, calculus, logic and algorithms.
  • Bayesian networking or graphical modeling, including neural nets.
  • Physics, engineering and robotics.
  • Computer science, programming languages and coding.
  • Cognitive science theory.
关于数学基础:
  • 线性代数,最小二乘,PCA,SVD
  • 微积分基础,梯度下降法,牛顿法,神经网络后向传播
  • 概率论基础,条件概率,贝叶斯定理,logistic

很多小伙伴觉得自己数学不好,是不是就会很难入门,上一篇文章中提到过,入门并不难,本科时的高数就可以用,如果有时间,可以复习一下 线性代数,微积分,概率论,这些是基础。就算学习深度学习时遇到了复杂的模型公式,有了这些基础,应该也是可以看懂的。

库:
  • TensorFlow + Keras
  • Python: Numpy, Pandas, Matplotlib, Scipy
机器学习算法基础:

分类
回归
聚类
关联
决策树
支持向量机(SVM)
神经网络
深度学习
增强学习
交叉检验
贝叶斯

模型训练基础:
    <
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值