之前写了一篇入门级的学习列表: 简单粗暴地入门机器学习
好多小伙伴觉得不太过瘾,今天补充一些脑洞!
本文结构:
- 机器学习技术栈
- 职位
- 项目实例
1. 机器学习技术栈
去知乎上可以搜到很多推荐的学习路线,问题就是太多了,我就先列出一些必需的知识和项目方向,学习还是要一步一步积累的。
需要的基础技能:
- Various level of math, including probability, statistics, algebra, calculus, logic and algorithms.
- Bayesian networking or graphical modeling, including neural nets.
- Physics, engineering and robotics.
- Computer science, programming languages and coding.
- Cognitive science theory.
关于数学基础:
- 线性代数,最小二乘,PCA,SVD
- 微积分基础,梯度下降法,牛顿法,神经网络后向传播
- 概率论基础,条件概率,贝叶斯定理,logistic
很多小伙伴觉得自己数学不好,是不是就会很难入门,上一篇文章中提到过,入门并不难,本科时的高数就可以用,如果有时间,可以复习一下 线性代数,微积分,概率论,这些是基础。就算学习深度学习时遇到了复杂的模型公式,有了这些基础,应该也是可以看懂的。
库:
- TensorFlow + Keras
- Python: Numpy, Pandas, Matplotlib, Scipy
机器学习算法基础:
分类
回归
聚类
关联
决策树
支持向量机(SVM)
神经网络
深度学习
增强学习
交叉检验
贝叶斯
模型训练基础:
-
<