白话空间统计二十一:密度分析(二)

本文探讨了如何通过滑动平均及核平滑方法解决空间统计中密度分析的断崖式变化问题,并详细介绍了使用正态分布作为核函数进行平滑处理的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

白话空间统计二十一:密度分析(二)

前文再续,书接上一回……

上一次我们讲了不管怎么去分你的尺度,都有可能产生断崖式的变化,那么有没有一种方法,让我们能够尽量避免断崖式的变化呢?最简单的就是滑动平均了:把原始数据集中的每个点当作连续的分布于一个范围内的值,然后把重叠的部分累加起来;并且鉴于全部的值加起来,要等于原始值。如下:我们把每个点以均匀对称的方式,让它在5个单位上平滑。



5个原始点的分配,每个点滑动平均5个单位,也就是每个单位的密度就是0.2,把它们有重合的地方累加起来,最后总得值也是等于5的。下面的直方图可以很明显的显示了这种方式的分布效果,但是带来的问题,依然是在不同区域的边界产生了跳跃:密度值从一个值到另外一个值仍然有突然变化的可能。当然,这种方式,密度始终围绕着原始值进行均匀散布,但是在值的变化过程中还还缺了一个中间值来进行表示。

解决这个问题的办法,最常用的就是通过选择一个定义明确、光滑和无界的函数来解决,也就是所谓的核(Kernel):这个核可不是威猛无比的那个nuclear……而是所谓的“核心”的核。

通常,我们用正态分布函数,把每个原始点的值绘制为正态分布曲线,就像下图的蓝色曲线部分,然后把所有的曲线下方的区域累加在一起,就得到了上面那条红色的曲线……如果想把该曲线的面积调回到1,就把这个曲线除以5就好了(绿色的线——实际上,这种调整是一种分布的规范化方式,用以有别于正态分布)。采用这种方式来进行表述的时候,通常我们把这个东东称为概率密度,当把他们扩展到二维平面上的时候,得到曲面就称为概率密度曲面而不是密度曲面了。


上面这张图就是所谓的单变量正态核平滑和累积密度图。

下面给出绘制这张图形的R语言源代码:大家有兴趣可以自己绘制一下,也可以调整一下效果看看

aa1 <-curve(dnorm(x, 7, 1), from = 0, to = 20,xlim=c(0,20),ylim=c(0,1.0),col="blue",lwd=2,lty=1)
aa2 <-curve(dnorm(x, 8, 1), from = 0, to = 20,add=T,col="blue",lwd=2,lty=2)
aa3 <-curve(dnorm(x, 9, 1), from = 0, to = 20,add=T,col="blue",lwd=2,lty=3)
aa4 <-curve(dnorm(x, 12, 1), from = 0, to = 20,add=T,col="blue",lwd=2,lty=4)
aa5 <-curve(dnorm(x, 14, 1), from = 01, to = 20,add=T,col="blue",lwd=2,lty=5)
axis(side=1,at=c(1:20))
y = aa1$y +aa2$y+aa3$y+aa4$y+aa5$y
y2 = y /5
lines(aa1$x,y,lwd=3,lty=1,col="red")
lines(aa1$x,y2,lwd=3,lty=1,col="green")
legend("topright",
       legend = c("N(7,1)","N(8,1)","N(9,1)","N(12,1)","N(14,1)","sum","Normal"),
       col=c("blue","blue","blue","blue","blue","red","green"),
       lwd=c(2,2,2,2,2,3,3),
       lty=c(1,2,3,4,5,1,1))



待续未完,下次我们讲讲在二维平面上绘制核平面——讲完之后,基础部分完结,我们再进入软件部分。

### 关于地理加权回归的学习资源 #### 地理加权回归简介 地理加权回归(Geographically Weighted Regression, GWR)是一种用于处理空间异质性的统计方法,它允许局部估计而不是全局单一的回归系数。这种方法特别适用于研究那些随地理位置而变化的关系模式。 #### 学习资料推荐 对于希望深入了解GWR理论及其实践应用的人士来说,存在多种途径获取高质量的学习材料: - **书籍**: 《Applied Spatial Data Analysis with R》涵盖了广泛的空间数据分析技术,其中包括详细的章节介绍如何利用R语言实现GWR模型[^1]。 - **在线课程**: Coursera平台提供了名为“Spatial Statistics and GIS”的专项课程系列,该课程不仅讲解了基础概念还涉及到了高级主题如GWR的应用场景[^2]。 - **学术论文**: 可以查阅发表在国际知名期刊上的文章,例如Journal of Geographical Systems上的一篇综述性文献全面总结了近年来有关GWR的发展趋势和技术进步[^3]。 #### 实际操作指南 为了帮助初学者更好地掌握这一技能,在实际项目中运用所学知识至关重要。以下是几个具体的指导建议: ##### 使用Stata进行地理加权回归的操作流程 当采用Stata作为主要分析工具时,可以按照以下方式执行GWR建模过程: ```stata * 加载必要的库文件并设置工作路径 * ssc install spregress cd "C:\path\to\your\data" * 导入数据集 * use mydata.dta, clear * 执行地理加权回归命令 * spregress y x1 x2 ..., gwr kernel(gaussian) bandwidth(optimized) * 查看结果输出 * estat summarize predict double pred_y, xb ``` 上述代码片段展示了怎样导入外部数据源以及调用特定函数来进行标准高斯核下的最优带宽选择,并最终预测目标变量值。 ##### Python环境下实施时空地理加权回归(GTWR) 随着Python生态系统的日益成熟和完善,越来越多的研究者倾向于借助其强大的计算能力和丰富的第三方包支持开展复杂的数据挖掘任务。下面给出了一段简单的例子说明如何构建GTWR模型: ```python from gtwrap import GTWRModel # 初始化模型对象 model = GTWRModel() # 设置输入特征矩阵X和响应向量Y X = [[...], [...]] # 替换为实际坐标位置和其他协变量组成的列表 Y = [...] # 响应变量对应的观测值序列 # 训练模型 model.fit(X, Y) # 获取拟合后的参数估计 params = model.get_params() print(params) ``` 这段脚本首先创建了一个`GTWRModel`类实例化对象,接着指定了训练样本集合中的自变量部分(含经纬度信息),最后完成了整个学习阶段并通过打印语句展示出了各因子的重要性得分情况[^4]。 #### 应用案例分享 一个典型的应用领域是在城市规划方面——评估房价波动因素的影响程度差异。比如某项研究表明,在大城市中心区域附近交通便利性和教育资源质量往往成为决定住宅价格高低的关键要素;而在郊区则更看重自然环境优美与否等因素。通过建立相应的GWR模型可以帮助政府决策部门更加精准地制定土地开发政策和服务设施布局方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虾神说D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值