K-Means聚类算法

本文介绍了K-Means聚类算法,包括算法的基本概念、步骤、代码实现以及优缺点。K-Means是一种简单的聚类算法,通过计算数据点与聚类中心的距离进行分类。算法步骤包括设定K值,随机选择初始中心点,迭代更新中心点直至收敛。其优点是简单快速,但初始中心点的选择和大规模数据的处理是其主要挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更多数据挖掘算法:https://github.com/linyiqun/DataMiningAlgorithm

算法介绍

K-Means又名为K均值算法,他是一个聚类算法,这里的K就是聚簇中心的个数,代表数据中存在多少数据簇。K-Means在聚类算法中算是非常简单的一个算法了。有点类似于KNN算法,都用到了距离矢量度量,用欧式距离作为小分类的标准。

算法步骤

(1)、设定数字k,从n个初始数据中随机的设置k个点为聚类中心点。

(2)、针对n个点的每个数据点,遍历计算到k个聚类中心点的距离,最后按照离哪个中心点最近,就划分到那个类别中。

(3)、对每个已经划分好类别的n个点,对同个类别的点求均值,作为此类别新的中心点。

(4)、循环(2),(3)直到最终中心点收敛。

以上的计算过程将会在下面我的程序实现中有所体现。

算法的代码实现

输入数据:

3 3
4 10
9 6
14 8
18 11
21 7
主实现类:

package DataMining_KMeans;

import java.io.BufferedReade
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值