目标检测算法中的bounding box regression

边框回归详解
本文深入探讨了目标检测中边框回归的基本原理,解释了为何需要进行边框回归以提高检测精度,并详细介绍了线性回归在边框微调中的应用。

原文转载于:http://blog.csdn.net/elaine_bao/article/details/60469036

一、前言

       一些目标检测算法如R-CNN、Fast RCNN中都用到了bounding box回归,回归的目标是使得预测的

物体窗口向groundtruth窗口相接近

二、做边框回归的原因

                                                

      如上图所示,绿色的框为飞机的Ground Truth,红色的框是提取的Region Proposal。那么即便红色

的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5),那么这张图相当于没有正确的检测出

飞机。如果我们能对红色的框进行微调,使得经过微调后的窗口跟Ground Truth更接近,这样岂不是定

位会更准确。确实,Bounding-box regression 就是用来微调这个窗口的。

三、回归/微调的对象


四、3. Bounding-box regression(边框回归)

         从边框变换至,一种简单的思路如下:

       


          注意:只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练

我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟GT离得较远,就是复杂的非线

性问题了,此时用线性回归建模显然不合理)。这个也是G-CNN: an Iterative Grid Based Object Detector

多次迭代实现目标准确定位的关键

          线性回归就是给定输入的特征向量X,学习一组参数W,使得经过线性回归后的值跟真实值Y(Ground 

Truth)非常接近。即

          故使用线性回归学习,这四个变换可以表示为

是边框的特征向量,即R-CNN中的Pool5feature(特征向量),是要学习的参数,(*表示

就是每一个变换对应一个目标函数),是得到的预测变换值。我们要让预测值跟真实的变换差距最

小,那真实的变换值是什么?这需要根据训练样本的输出边框和ground truth 边框得到,计算如下:

                                                                                     

          故要让 尽可能接近,可得损失函数如下:

                                                                         

          优化目标函数得:

                                                  


### 边界框回归概念 边界框回归目标检测算法中的一个重要组成部分,其目的是通过调整初始预测的边界框来更精确地定位目标对象的位置和尺寸。在训练过程中,模型学习如何修正这些初步预测以最小化真实边界框与预测之间的差异。 对于大多数现代的目标检测框架而言,边界框通常由四个参数定义:中心坐标 (cx, cy),宽度 w 和高度 h 或者左上角坐标(xmin,ymin)以及右下角坐标(xmax,ymax)[^1]。 ### 实现方法 #### R-CNN系列 R-CNN及其变体(Fast R-CNN, Faster R-CNN)采用两阶段的方法来进行边界框回归。首先利用区域提议网络生成候选区域;其次,在第二阶段应用线性支持向量机(SVMs)或其他分类器对每个建议区进行分类并执行边界框微调操作。具体来说,Faster R-CNN引入了一个专门负责产生高质量区域提案的子网——Region Proposal Network(RPN),它可以直接嵌入到整个架构之中。 ```python def bbox_transform(deltas, boxes): """ Apply bounding-box regression deltas to predicted boxes. Parameters: deltas: Predicted offsets from each anchor box. boxes : Original anchor or proposal boxes. Returns: Transformed boxes based on the given delta values. """ widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights dx = deltas[:, 0::4] dy = deltas[:, 1::4] dw = deltas[:, 2::4] dh = deltas[:, 3::4] pred_ctr_x = dx * widths.unsqueeze(-1) + ctr_x.unsqueeze(-1) pred_ctr_y = dy * heights.unsqueeze(-1)+ ctr_y.unsqueeze(-1) pred_w = torch.exp(dw) * widths.unsqueeze(-1) pred_h = torch.exp(dh) * heights.unsqueeze(-1) pred_boxes = deltas.clone() # x1 pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # y1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # x2 pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # y2 pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h return pred_boxes ``` #### Single Shot Detectors (SSD/YOLOvX) 相比之下,像YOLO这样的single shot detectors则采取了一种更加直接的方式处理这个问题。它们在整个输入图片上划分出固定数量的网格单元格,并让每一个细胞都去预测一定数目的边界框及其对应的置信度得分。这种做法不仅简化了流程而且提高了速度,因为不需要额外的时间消耗于生成region proposals这一步骤之上[^2]。 ### 应用场景 边界框回归的应用非常广泛,几乎涵盖了所有涉及到视觉识别的任务领域: - **自动驾驶汽车**:车辆周围环境感知系统依赖于精准的对象位置信息以便做出安全决策; - **安防监控视频分析**:实时跟踪人员活动轨迹、异常行为预警等功能都需要依靠稳定可靠的物体检测技术提供支撑; - **机器人导航避障**:帮助移动平台理解周边空间布局从而规划最优路径绕过障碍物; - **增强现实游戏开发**:使得虚拟物品能够自然融入现实生活场景当中并与之互动。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值