关闭

[置顶] 基于全连接孪生网络的目标跟踪(siamese-fc)

Fully-Convolutional Siamese Networks for Object Tracking这两年可以说deeplearning已经占领了visual object tracking这个领域,但是对于跟踪问题来说,这些基于DL的做法虽然能够很好的提升跟踪的效果,但是在时效性这一方面却做的很差,这是因为DL复杂的模型往往需要很大的计算量,尤其是当使用的DL模型在跟踪的时候对模型进行...
阅读(4540) 评论(6)

[置顶] GOTURN——Learning to Track at 100 FPS with Deep Regression Networks

文章的题目叫:《Learning to Track at 100 FPS with Deep Regression Networks》 算法简称:GOTURN(Generic Object Tracking Using Regression Networks) 作者是斯坦福的David Held 文章以及附件:http://davheld.github.io/GOTURN/GOTURN.htm...
阅读(6293) 评论(4)

[置顶] STCT: Sequentially Training Convolutional Networks for visual tracking

1、怎么将CNN用在特定的任务中众所周知CNN的使用往往需要大量的训练样本,但是我们在很多特定任务中是没法获得像imageNet那样庞大的样本库,因此如何在小样本中使用CNN是一个难题。后来很多学者经过研究发现CNN的模型有很好的泛化性能,即在大样本库中训练好的CNN模型对于特定的任务也有不错的性能。一些学者根据这个特性提出了fine-tune的方法,如上图所示。我们首先在big dataset上训...
阅读(2142) 评论(0)

[置顶] Ubuntu16.04+cuda8.0+caffe安装教程

1、安装nvidia驱动首先去官网上查看适合你GPU的驱动(http://www.nvidia.com/Download/index.aspx?lang=en-us) 例如,本人的GPU适合的驱动如图: 执行如下语句,安装sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get update sudo apt-get instal...
阅读(38727) 评论(22)

[置顶] ubuntu16.04安装caffe以及各种问题汇总

本文参考了: https://github.com/BVLC/caffe/wiki/Ubuntu-16.04-or-15.10-Installation-Guide https://gist.github.com/wangruohui/679b05fcd1466bb0937f#file-caffe-ubuntu-15-10-md http://blog.csdn.net/g0m3e/artic...
阅读(16233) 评论(5)

Windows访问Ubuntu共享文件夹

windows访问Ubuntu共享文件夹有时候我们需要在windows中方便的访问修改Linux中的文件夹,可以使用samba方便的完成这种操作,类似于windows和windows之间的文件夹共享。下面说一下具体的配置和操作过程:1、确认系统中安装sambasudo apt-get install samba2、设置你的账户samba密码sudo touch /etc/samba/smbpassw...
阅读(121) 评论(0)

L1相较于L2的稀疏性

L1相较于L2的稀疏性在机器学习中,常见的正则化项有L1(L=∑|w|L=\sum|w|)和L2(L=||w||2L=||w||^2),并且也经常会看到L1相较于L2有较高的稀疏性,虽然记住了这句话的内容,但总是不理解其具体含义,也不理解为何又稀疏性,在研究了一番后,有了一些理解,因此分享给大家。 (本文部分内容和图片引用自:https://www.zhihu.com/question/37096...
阅读(229) 评论(0)

zero-shot learning

Zero-shot Learning参考文献《Zero-Shot Learning with Semantic Output Codes》背景在分类问题中,因为数据库大小有限,因此在使用分类模型进行预测时,出现了在训练集没有出现过的类别。举个例子,我们有个小型数据库,里面所含的类别只有人、鸟、汽车,经过我们的训练,发现模型对于这些类别的目标已经有很好的性能了,但是突然出现了一个新的类别——狗,此时模...
阅读(1027) 评论(0)

Contrastive Loss (对比损失)

Contrastive Loss (对比损失)在caffe的孪生神经网络(siamese network)中,其采用的损失函数是contrastive loss,这种损失函数可以有效的处理孪生神经网络中的paired data的关系。contrastive loss的表达式如下: L=12N∑n=1Nyd2+(1−y)max(margin−d,0)2L=\frac{1}{2N}\sum_{n=1}...
阅读(5432) 评论(0)

git clone远程仓库的分支

github上比较有名或者较为有名的代码一般都有分支,分支的作用是不同的开发人员在不同的分支上同时进行开发,并且不影响master。 当我们想clone别人的在分支中修改的code时,我们在github中看到往往是master,并且我们clone下来的也是也是master,如下图,是一个工程的不同分支,当我点击不同的分支,其clone的https却是一样的,那么该如何clone我想要的分支呢?首先...
阅读(950) 评论(0)

ubuntu16.04安装 cuda7.5

在文章开始前,先辨析几个概念GPU、NVIDIA、NVIDIA驱动、CUDA、cudnn等,这些概念对于一个新手来说肯定是很晕的,正如我当初一样,所以我这里就稍微介绍一下这几个概念: GPU:Graphics Processing Units,也就是我们常说的显卡。现在的笔记本或者台式机都会有显卡,但是能够让我们用来做并行计算的真正的GPU就只有NVIDIA出产的GPU了。 NVIDIA:GPU生产...
阅读(6298) 评论(1)

VS工程配置中的一些常用概念

VS工程配置中一些常用概念在看这篇文章之前首先思考几个问题: 1、什么是解决方案?为什么要有解决方案? 2、我想引用的头文件和我的cpp文件不在同一个文件夹,我改怎么办?能直接引用吗? 3、在配置opencv的时候需要配置的那些库目录、包含目录到底是怎么回事?思考完上述问题,下面对上述问题进行解答,并介绍一些vs在工程配置的时候常用的一些做法和概念。尽量做到知其然,知其所以然。一、解决方案(s...
阅读(529) 评论(0)

Ubuntu更新完NVIDIA驱动后,重启电脑进入不了系统,一直处于登录界面

Ubuntu更新完NVIDIA驱动后,重启电脑进入不了系统,一直处于登录界面如题描述,我的系统是Ubuntu16.04,安装caffe的过程将一些驱动更新了,后来重启电脑时发现我进入不了系统了,输入我的登录密码会发现屏幕一闪,然后又重新跳回到登录界面,就是进入了login loop的状态,我一开始在网上查,很多人说是什么.Xauthority的问题,我尝试了几乎所有办法都不行,所幸最后找到了问题所在...
阅读(4563) 评论(0)

ubuntu下让theano使用GPU

ubuntu下让theano使用GPU在ubuntu下安装完theano以及cuda后,可以使用如下程序来测试你当前是否使用了GPU:from theano import function, config, shared, sandbox import theano.tensor as T import numpy import timevlen = 10 * 30 * 768 # 10 x #c...
阅读(1548) 评论(0)

反向传播算法(back propagation)

反向传播算法是多层神经网络的训练中举足轻重的算法,本文着重讲解方向传播算法的原理和推导过程。因此对于一些基本的神经网络的知识,本文不做介绍。在理解反向传播算法前,先要理解神经网络中的前馈神经网络算法。前馈神经网络如下图,是一个多层神经网络的简单示意图: 给定一个前馈神经网络,我们用下面的记号来描述这个网络: LL:表示神经网络的层数; nln^l:表示第ll层神经元的个数; fl(∙)f...
阅读(1566) 评论(0)

逻辑回归

逻辑回归逻辑回归(Logistic Regression,LR)是一种很常用的分类算法,对于一般的二分类情况,给定N个训练样本,(x1,y1),(x2,y2)...(xN,yN)(x_1,y_1),(x_2,y_2)...(x_N,y_N),其中xi∈Rnx_i\in R^n是一个n维向量,yi∈{−1,+1}y_i\in \{-1,+1\}表示了其对应样本的标签,1代表正样本,-1代表负样本。一般...
阅读(510) 评论(0)

双线性插值算法

双线性插值算法双线性插值是一般的线性插值算法的扩展,其核心思想是在两个方向上分别进行一次线性插值。选取合适的二位坐标系,并且已知f(x0,y0)、f(x0,y0+1)、f(x0+1,y0)、f(x0+1,y0+1)f(x_0,y_0)、f(x_0,y_0+1)、f(x_0+1,y_0)、f(x_0+1,y_0+1),则双线性插值可以用如下的插值公式表示: f(x,y)=[1−xx][f(x0,y0...
阅读(772) 评论(0)

深度剖析adaboost

在分析adaboost算法前,首先看一幅图。 如上图所示,adaboost算法的核心思想就是由分类效果较差的弱分类器逐步的强化成一个分类效果较好的强分类器。而强化的过程,就是如上图所示逐步的改变样本权重,样本权重的高低,代表其在分类器训练过程中的重要程度。adaboost算法流程下面首先来看一下在李航的《统计学习方法》一书中对adaboost的解释: 算法的输入:训练数据集T={(x1,y1...
阅读(1034) 评论(0)

Hierarchical convolutional Features for visual tracking

Hierarchical convolutional Features for visual tracking算法概要这篇文章所提出的算法在本质上还是cf那一套框架,作者着重改变的是目标的特征描述。在以往的cf中,大家用的都是常用的物体特征描述,比如HOG,但是这种特征毕竟是manual的,当目标本身的appearance发生较大的改变时,manual型的特征不能很好的适应。注意到在物体检测识别领域...
阅读(3271) 评论(7)

深入理解卡尔曼滤波

卡尔曼滤波卡尔曼滤波的作用不用多说,就是根据前面已知的信息,预测将来可能发生的情况。对于一个系统来说,以跟踪系统为例,如果视频中待跟踪物体按静止不动,或者按照一定的规律运动时,那在当前帧便可以预测下一帧物体所在位置。但是实际中,物体的运动往往不是一成不变的,比如在视频中物体一直往右下角移动,但是移动的方向却或多或少有一定的变化,这种变化可以理解成一种随机噪声。因此需要找到一种随机估计方式,来估计系统...
阅读(1352) 评论(0)
62条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:229212次
    • 积分:2784
    • 等级:
    • 排名:第13681名
    • 原创:60篇
    • 转载:1篇
    • 译文:0篇
    • 评论:141条
    联系我
    本人邮箱:autocyz@163.com 欢迎交流
    博客专栏
    最新评论