陶哲轩实分析-第11章 Riemann积分

11.1 分法

是不是翻译成“分割”更合适?
习题
11.1.1
(a)=>(b)
没有提示估计真不知道这个还怎么证明了
考虑a=inf{X},b=sup{X},那么必然有对于X中任意元素x,有 axb ,X必然属于(a,b),[a,b),(a,b],[a,b]中的一种
(b)=>(a)
有界区间必然有界,连通性,对于任意 axyb ,[x,y]是X的子集合(根据子集合定义)。

11.1.2
根据引理11.1.4,需要证明 XY 是有界的,连通的即可。有界的容易证明,假设I有上界M,J有上界N,那么他们的交有上界 min(M,N) 。连通性,考虑交集中的任意两个点 x<y ,那么 [x,y]I 并且 [x,y]J ,所以 [x,y]IJ ,证明完成。

11.1.3
根据提示,如果 Ij 不是形如(c,b)或 [ c,b)的区间,那么必然是(e,d)或(e,d ] (当然还有[e,d)和[e,d],类似讨论)并且d

11.2 逐段常值函数

注12.2.2的为什么
因为对于任意c,对于任意 xϕf(x)=c 是真命题。
定义11.2.9长度的定义在定义11.1.8

习题
11.2.1
因为P’比P更细,所以对于任意 JP ,必有 JKP ,f在K上常值所以在J上常值。

11.2.2
f和g都逐段常值,所以根据定义都存在一个分法使得其逐段常值,那么这两个分法的公共加细既对f逐段常值,又对g逐段常值,那么在这公共加细的每个区间,f+g, f-g, max(f,g), fg, f/g 都是常值。

11.2.3
要证这个结论,只需要证明更细的分法不会改变逐段常值积分即可,因为这样的话等号两边都等于P和P’公共加细的积分。
考虑P,如果P’比P更细,那么对于任意 JP ,存在 K1...KnP ,并且 J=K1...Kn (考虑{K,K包含在P’的分法并且 KJϕ })。那么对于区间J, |J|=Ki ,证明完成。

11.2.4
(a) 根据引理11.2.8中f+g
(b) 根据引理11.2.8中fg,考虑g(x)=c
(c) 根据引理11.2.8中f-g
(d) 非负数的和非负
(e) 对于f和g的公共加细求积分,每项都大于可得结论
(f) p.c.If=JPcJ|J|=cJP|J|=c|I| ,根据定义11.1.13,长度是有限可加的。
(g) 只需要考虑J包含I的分法即可
(h) 考虑J的分法和K的分法组成的I的分法即可

11.3 上Riemann积分和下Riemann积分

习题
11.3.1
fggh=>fh
fggf=>f=g

11.3.2
fg => f+hg+h
fhgh 要想成立需要 h0
c同样需要 c0

11.3.3
等号左边是根据上下Riemann积分定义的,右边是根据逐段常值积分定义的。
因为 inf{ p.c.Ig} = sup{ p.c.Ig} = p.c.If

11.3.4
U(f,P)=JP,jϕ(supf(x))JJP,jϕg(x)|J|=p.c.Ig
L(f,P)类似

11.3.5
¯¯If=inf{ p.c.I

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值