关闭

陶哲轩实分析-第11章 Riemann积分

标签: 数学
537人阅读 评论(0) 收藏 举报
分类:

11.1 分法

是不是翻译成“分割”更合适?
习题
11.1.1
(a)=>(b)
没有提示估计真不知道这个还怎么证明了
考虑a=inf{X},b=sup{X},那么必然有对于X中任意元素x,有axb,X必然属于(a,b),[a,b),(a,b],[a,b]中的一种
(b)=>(a)
有界区间必然有界,连通性,对于任意axyb,[x,y]是X的子集合(根据子集合定义)。

11.1.2
根据引理11.1.4,需要证明XY是有界的,连通的即可。有界的容易证明,假设I有上界M,J有上界N,那么他们的交有上界min(M,N)。连通性,考虑交集中的任意两个点x<y,那么[x,y]I并且[x,y]J,所以[x,y]IJ,证明完成。

11.1.3
根据提示,如果Ij不是形如(c,b)或 [ c,b)的区间,那么必然是(e,d)或(e,d ] (当然还有[e,d)和[e,d],类似讨论)并且d

11.2 逐段常值函数

注12.2.2的为什么
因为对于任意c,对于任意xϕf(x)=c是真命题。
定义11.2.9长度的定义在定义11.1.8

习题
11.2.1
因为P’比P更细,所以对于任意JP,必有JKP,f在K上常值所以在J上常值。

11.2.2
f和g都逐段常值,所以根据定义都存在一个分法使得其逐段常值,那么这两个分法的公共加细既对f逐段常值,又对g逐段常值,那么在这公共加细的每个区间,f+g, f-g, max(f,g), fg, f/g 都是常值。

11.2.3
要证这个结论,只需要证明更细的分法不会改变逐段常值积分即可,因为这样的话等号两边都等于P和P’公共加细的积分。
考虑P,如果P’比P更细,那么对于任意JP,存在K1...KnP,并且J=K1...Kn(考虑{K,K包含在P’的分法并且KJϕ})。那么对于区间J,|J|=Ki,证明完成。

11.2.4
(a) 根据引理11.2.8中f+g
(b) 根据引理11.2.8中fg,考虑g(x)=c
(c) 根据引理11.2.8中f-g
(d) 非负数的和非负
(e) 对于f和g的公共加细求积分,每项都大于可得结论
(f) p.c.If=JPcJ|J|=cJP|J|=c|I|,根据定义11.1.13,长度是有限可加的。
(g) 只需要考虑J包含I的分法即可
(h) 考虑J的分法和K的分法组成的I的分法即可

11.3 上Riemann积分和下Riemann积分

习题
11.3.1
fggh=>fh
fggf=>f=g

11.3.2
fg=>f+hg+h
fhgh要想成立需要h0
c同样需要c0

11.3.3
等号左边是根据上下Riemann积分定义的,右边是根据逐段常值积分定义的。
因为inf{p.c.Ig}=sup{p.c.Ig}=p.c.If

11.3.4
U(f,P)=JP,jϕ(supf(x))JJP,jϕg(x)|J|=p.c.Ig
L(f,P)类似

11.3.5
¯¯If=inf{p.c.Ig:gf}inf{U(f,P)},根据引理11.3.11。
另一半怎么证明?
这一章看完又看到第二遍,还是没有思路。
后来一想,目前离最后的证明还差:需要证明对于任意黎曼和,都存在g,满足inf{p.c.Ig:gf}inf{U(f,P)},事实上,对于每个分割P的黎曼和,都存在g满足p.c.g=U(f,P),只需要在每个分割中等于supf(x)即可,证明完成。

11.4 Riemann积分的基本性质

习题
11.4.1
定理11.4.1,采用Riemann积分定义11.3.4证明
(a)
I¯¯¯(f+g)=inf{p.c.Ih, hf+g}=inf{p.c.I(hf+hg), hffgfg}
然后根据11.2.16,得出I¯¯¯(f+g)=I¯¯¯f+I¯¯¯g
(b)
根据提示,c>0类似上面证明,c=0则都等于0,c=-1,则I¯¯¯(f)=inf{p.c.Ih, hf}=inf{p.c.Ih, hf}=I(f),类似可证明I(f)=I¯¯¯(f),证明完成
(c)结合(a)和(b),f-g = f+(-1)g
(d)上下方控制都可以大于等于0
(e)考虑h=f-g
(f)根据定义直接得出
(g)考虑J=I+K,那么J¯¯¯¯(F)=inf{p.c.Jh, hF}=inf{p.c.Ih, hf}=I¯¯¯(f)
(h)根据11.2.16(h)

11.4.2
假设对于x[a,b], f(x)>0,根据函数连续性,对于ε=f(x)/2(其它小于f(x)的值当然也可以),必然存在δ使得如果y[xδ,x+δ],则f(y)f(x)ε,这样[a,b]f2δf(x)/2,与积分为0矛盾。

11.4.3
分法里面的每个区间都是独立的,所以可以相加。

11.4.4
定理11.4.3中的min,min(f,g)=max(-f,-g)
定理11.4.5中f+g=(f+(g)),其它类似。

11.5 连续函数的Riemann可积性

习题
11.5.1
根据定理11.4.1的(a)和(h)可以直接得出

11.6 单调函数的Riemann可积性

这些章节里面讲的东西事实上非常抽象,这也是数学分析的特点,比如命题11.6.1中的单调,并不止通常意义上的单调,也包括习题9.8.5中的单调。
习题
16.6.1
ε是小于b-a/2的很小的数,当f限制在[a+ε,bε],则满足11.6.1的条件,Riemann可积,于是可以找到逐段常值函数h在这个闭区间上满足hf+ε
于是可以找到在整个区间上方限制f的函数h˜满足Ih˜[a+ε,bε]+(2M+1)ε,下面证明与命题11.5.3的完全类似。

16.6.2
类似定义11.5.4,只需要对于某个分法P,使得对于一切JPfJ,证明与命题11.5.6的类似

16.6.3
因为f单调减,考虑长度为1的分法,所以Nn=1[0,N]fN1n=0,因为Nn=1为积分的下方限制,N1n=0为上方限制,证明完成。

16.6.4
如果不单调,那么Nn=1不再是积分的下方限制,N1n=0也不再是上方限制。
考虑(1)x1x,级数是收敛的,但是不可积。

11.6.5
如果能用广义微积分基本原理,那很简单当p>1时,11np=(1p)(1p)(1p)=p1,有限,而p>1时为ln

11.7 一个非Riemann可积的函数

到现在还在看数学的一个原因是,很多东西确实有意思,比如这个不可积的狄利克雷函数,可积的黎曼函数,测度里面各种奇怪性质,没有原函数的函数是有原因的等等。

11.8 Riemann-Stieltjes积分

习题
11.8.1仿照11.1.13的证明,对n进行归纳:p(n): 只要I是有界区间,P是分法,n是P的基数,就有α[I]=JPα[J]
n=0的情况下,I只有一个空的分法,两边都等于0
n=1的情况下,I也只有一个分法P={I},那么α[I]=α[I]
那么归纳假定n对于n1成立,需要证明P(n+1)成立,那么设I是有界区间,并设P是I的分法,P的基数是n+1,如果I是空集,,那么所有区间长度都是0,如果I是单点集{x},那么区间α长度为α(x)α(x)=0,剩下的情况就是(a,b),[a,b),(a,b],[a,b] (a < b)。下面只叙述跟11.1.13不同的地方:
α[I]=α[K]+α[IK],剩下的都类似证明。

11.8.2
证明过程类似,首先证明同一区间分法P和更细的分法P’有同样的逐段常值积分值,
然后容易得出两种分法的公共加细都等于这两种分法的逐段常值积分值。

11.8.3完全类似

11.8.4基本类似

11.8.5
根据定义计算[1,1]fdsgn,只需要将区间[-1,1]分成3份,0附近,0左边,0右边。由于f连续,那么对于任意ε,存在x[δ,δ],满足|f(x)f(0)|ε。假设f(0)>0,f(0)=0和小于0类似讨论。 考虑分法[1,ε],(ε,ε),[ε,1]。那么[1,1]fdsgn=[δ,δ]fdsgn,那么(f(0)+ε)¯¯(f(0)ε),由于ε可以任意小,所以积分存在并且等于f(0)。

11.9 微积分的两个基本定理

习题
11.9.1 没明白提示为什么让用中值定理,感觉应该用微分概念呀,
在某个有理数q可微,那么需要limf(x)f(q)xq存在,但是由于q=q(n),那么对于任意小的εf(q+ε)f(q)2n,由于微分定义中分子有下界,分母可以任意小,所以极限不收敛到某个实数,微分不存在。

11.9.2
设区间边界为ab,那么对于区间中任意a < x < y < b,根据推论10.2.9,考虑函数F-G有(F(y)-G(y)-(F(x)-G(x)))=(f’(c)-f’(c))(y-x)=0.所以(F(y)G(y)(F(x)G(x)))=0对任意xy都成立,所以F=G+C
用微积分第二定理不知道该怎么证,因为不确定Riemann可积。

11.9.3
充分性<=
满足微积分基本定理一的条件:f在x0点连续,Riemann可积
必要性=>
想了得有总共3个小时,没有头绪,唉。
后来看到了提示中的反证法。其实中间也想过用反证法,一想而过。
分2步,首先证明F=f,然后证明最后结果。
第1步
F在x0可微,所以极限limF(x)F(x0)xx0存在,如果x>x0,那么F(x0)=limF(x)F(x0)xx0=limxx0f/(xx0)f(x0),同理可证明在x0左边有F(x0)f(x0),第一步证明完成。
第2步
由于函数单调,如果在某点x0不连续,那么必然左不连续或者右不连续或者左右不连续,如果右不连续,那么F(x0)=limF(x)F(x0)xx0=limxx0f/(xx0)>f(x0),与第1步中结论矛盾;左不连续的情况类似。

11.10 基本定理的推论

习题
11.10.1
F,G闭区间可微(必然连续),所以Riemann可积(11.5.2)。F,G也Riemann可积,所以FG可积,并且根据11.9.4,[a,b](FG)=F(b)G(b)F(a)G(a)=[a,b]FG+[a,b]FG,证明完成。

11.10.2
为什么φ1(J)是连通的
因为J是区间,而φ单调增,所以如果a<x<y<b,必然f(a)<f(x)<f(y)<f(b)

为什么Q是[a,b]的分法
因为对于任意x[a,b],由于φ连续单调增,必然存在唯一φ(x)φ1(φ(x))=x,而φ(x)又必然属于唯一的JP

为什么fφ关于Q是逐段常值的
因为f关于P是逐段常值的

为什么φ[φ1(J)]=|J|
因为J是区间,φ单调连续,所以区间4种情况都成立。

11.10.3
f是Riemann可积的,对于任意ε,存在上方控制f的常值函数和下方控制f的常值函数满足
[a,b]fε[a,b]f[a,b]f¯[a,b]f+ε
f下方控制f,所以f(x)f(x),定义g(x)=f(x),则g(x)=f(x)f(x)=g(x),所以g下方控制g,同理可以得到上方控制g的函数g¯,于是
[b,a]gε[b,a]g[b,a]g¯[b,a]g+ε。证明完成。

11.10.4
φ单调减,那么ϕ:[a,b][φ(b),φ(a)],这就是等号右边的区间。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:172949次
    • 积分:3085
    • 等级:
    • 排名:第11700名
    • 原创:120篇
    • 转载:15篇
    • 译文:3篇
    • 评论:20条
    新浪微博
    buck84
    最新评论