黎曼积分的概念

黎曼积分的概念

引入

f f f是闭区间 [ a , b ] [a,b] [a,b]上的非负连续函数, D D D是坐标系中由直线 x = a x=a x=a x = b x=b x=b x x x轴和曲线 y = f ( x ) y=f(x) y=f(x)围成的图形。求 D D D的面积 S S S
在这里插入图片描述
我们可以在 [ a , b ] [a,b] [a,b]中插入 n − 1 n-1 n1个分点:

a = x 0 < x 1 < ⋯ < x n = b a=x_0<x_1<\cdots<x_n=b a=x0<x1<<xn=b

[ a , b ] [a,b] [a,b]划分为 n n n个子区间 [ x 0 , x 1 ] , [ x 1 , x 2 ] , ⋯   , [ x n − 1 , x n ] [x_0,x_1],[x_1,x_2],\cdots,[x_{n-1},x_n] [x0,x1],[x1,x2],,[xn1,xn],并称 T T T [ a , b ] [a,b] [a,b]的这样一个分割,称 ∣ T ∣ = max ⁡ i = 1 n { x i − x i − 1 } |T|=\max\limits_{i=1}^n\{x_i-x_{i-1}\} T=i=1maxn{xixi1}为分割 T T T的长度。由此可将 D D D分割为若干个部分 Δ D 1 , Δ D 2 , ⋯   , Δ D n \Delta D_1,\Delta D_2,\cdots,\Delta D_n ΔD1,ΔD2,,ΔDn。在每一个区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi]任意取一个点 ξ i \xi_i ξi,用 f ( ξ i ) ( x i − x i − 1 ) f(\xi_i)(x_i-x_{i-1}) f(ξi)(xixi1)来近似地表示 Δ D i \Delta D_i ΔDi的面积。于是,我们可以用以下式子来近似地表示 S S S

∑ i = 1 n f ( ξ i ) ( x i − x i − 1 ) \sum\limits_{i=1}^nf(\xi_i)(x_i-x_{i-1}) i=1nf(ξi)(xixi1)

∣ T ∣ |T| T越小,这个式子对 S S S的近似程度就越高。当 ∣ T ∣ → 0 |T|\rightarrow0 T0时,如果 ∑ i = 1 n f ( ξ i ) ( x i − x i − 1 ) \sum\limits_{i=1}^nf(\xi_i)(x_i-x_{i-1}) i=1nf(ξi)(xixi1)的极限存在,则这个极限就为图形 D D D的面积 S S S

定义

f f f是闭区间 [ a , b ] [a,b] [a,b]上的有界函数,如果存在实数 I I I,使得对于 [ a , b ] [a,b] [a,b]的任意满足 ∣ T ∣ = max ⁡ i = 1 n { x i − x i − 1 } → 0 |T|=\max\limits_{i=1}^n\{x_i-x_{i-1}\}\rightarrow 0 T=i=1maxn{xixi1}0分割 T : a = x 0 < x 1 < ⋯ < x n = b T:a=x_0<x_1<\cdots<x_n=b T:a=x0<x1<<xn=b,在每个子区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi]中任取一个点 ξ i \xi_i ξi,就有

∑ i = 1 n f ( ξ i ) ( x i − x i − 1 ) = I \sum\limits_{i=1}^nf(\xi_i)(x_i-x_{i-1})=I i=1nf(ξi)(xixi1)=I

∀ ε > 0 , ∃ δ > 0 \forall\varepsilon>0,\exist\delta>0 ε>0,δ>0,只要分割 T T T的长度 ∣ T ∣ < δ |T|<\delta T<δ,无论 ξ ∈ [ x i − 1 , x i ] \xi\in[x_{i-1},x_i] ξ[xi1,xi]如何取,都有

∣ ∑ i = 1 n f ( ξ i ) ( x i − x i − 1 ) − I ∣ < ε |\sum\limits_{i=1}^nf(\xi_i)(x_i-x_{i-1})-I|<\varepsilon i=1nf(ξi)(xixi1)I<ε

则称 f f f在闭区间 [ a , b ] [a,b] [a,b]上黎曼可积,称 I I I f f f [ a , b ] [a,b] [a,b]上的黎曼积分,记为

I = ∫ a b f ( x ) d x I=\int_a^bf(x)dx I=abf(x)dx

a a a b b b称为积分的下限和上限, f f f称为被积函数, x x x称为积分变量。

由此可得,图形 D D D的面积为

S = ∫ a b f ( x ) d x S=\int_a^bf(x)dx S=abf(x)dx

这就是黎曼积分的概念。

f f f [ a , b ] [a,b] [a,b]上黎曼可积,记作 f ∈ R [ a , b ] f\in R[a,b] fR[a,b]

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值