11.1 分法
是不是翻译成“分割”更合适?
习题
11.1.1
(a)=>(b)
没有提示估计真不知道这个还怎么证明了
考虑a=inf{X},b=sup{X},那么必然有对于X中任意元素x,有 a≤x≤b ,X必然属于(a,b),[a,b),(a,b],[a,b]中的一种
(b)=>(a)
有界区间必然有界,连通性,对于任意 a≤x≤y≤b ,[x,y]是X的子集合(根据子集合定义)。
11.1.2
根据引理11.1.4,需要证明 X∩Y 是有界的,连通的即可。有界的容易证明,假设I有上界M,J有上界N,那么他们的交有上界 min(M,N) 。连通性,考虑交集中的任意两个点 x<y ,那么 [x,y]⊆I 并且 [x,y]⊆J ,所以 [x,y]⊆I∩J ,证明完成。
11.1.3
根据提示,如果 Ij 不是形如(c,b)或 [ c,b)的区间,那么必然是(e,d)或(e,d ] (当然还有[e,d)和[e,d],类似讨论)并且d
11.2 逐段常值函数
注12.2.2的为什么
因为对于任意c,对于任意 x∈ϕf(x)=c 是真命题。
定义11.2.9长度的定义在定义11.1.8
习题
11.2.1
因为P’比P更细,所以对于任意 J⊆P ,必有 J⊆K⊆P′ ,f在K上常值所以在J上常值。
11.2.2
f和g都逐段常值,所以根据定义都存在一个分法使得其逐段常值,那么这两个分法的公共加细既对f逐段常值,又对g逐段常值,那么在这公共加细的每个区间,f+g, f-g, max(f,g), fg, f/g 都是常值。
11.2.3
要证这个结论,只需要证明更细的分法不会改变逐段常值积分即可,因为这样的话等号两边都等于P和P’公共加细的积分。
考虑P,如果P’比P更细,那么对于任意 J⊆P ,存在 K1...Kn⊆P′ ,并且 J=K1∪...∪Kn (考虑{K,K包含在P’的分法并且 K∩J≠ϕ })。那么对于区间J, |J|=∑Ki ,证明完成。
11.2.4
(a) 根据引理11.2.8中f+g
(b) 根据引理11.2.8中fg,考虑g(x)=c
(c) 根据引理11.2.8中f-g
(d) 非负数的和非负
(e) 对于f和g的公共加细求积分,每项都大于可得结论
(f) p.c.∫If=∑J∈PcJ|J|=c∑J∈P|J|=c|I| ,根据定义11.1.13,长度是有限可加的。
(g) 只需要考虑J包含I的分法即可
(h) 考虑J的分法和K的分法组成的I的分法即可
11.3 上Riemann积分和下Riemann积分
习题
11.3.1
f≥g,g≥h=>f≥h
f≥g,g≥f=>f=g
11.3.2
f≥g => f+h≥g+h
fh≥gh 要想成立需要 h≥0
c同样需要 c≥0
11.3.3
等号左边是根据上下Riemann积分定义的,右边是根据逐段常值积分定义的。
因为 inf{
p.c.∫Ig} = sup{
p.c.∫Ig} = p.c.∫If
11.3.4
U(f,P)=∑J∈P,j≠ϕ(supf(x))J≤∑J∈P,j≠ϕg(x)|J|=p.c.∫Ig
L(f,P)类似
11.3.5
∫¯¯If=inf{
p.c.∫I