Kinect深度图像采集和Opencv差帧法运动目标检测

原创 2016年05月30日 23:10:28

环境配置:

1. 添加现有属性列表(opencv300.props)

2.1. VC++目录:包含目录添加C:\Program Files\Microsoft SDKs\Kinect\v1.8\inc;库目录添加C:\Program Files\Microsoft SDKs\Kinect\v1.8\lib\x86

2.2. 链接器-输入-附加依赖项添加Kinect10.lib


Kinect彩色和深度图像数据,以数据流的方式逐帧流出,获取数据流的两种方式:

1. 查询方式:不停的问摄像头拿数据,通过while循环不断催促,拿到数据就跑。

2. 事件方式:有新数据后,唤醒,再拿走数据。等新数据的过程叫一个事件,系统通过一个事件的句柄来标示。

Ref : http://blog.csdn.net/zouxy09/article/details/8146719

#include <windows.h>  
#include <iostream>   
#include <NuiApi.h>  
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

class FrameSubtractionKinect
{
public:
	void ImageOperation(Mat& depthimage, Mat& frame_0, int& num, int& steadyCount);
};

int main(int argc, char*argv[])//int类型的argc,用来统计程序运行时发送给main函数的命令行参数的个数。
                               //char*类型的argv[],为字符串数组,用来存放指向的字符串参数的指针数组,每一个元素指向一个参数。
{
	Mat image, frame_0;
	int num = 1;
	int steadyCount = 0;
	FrameSubtractionKinect detect;

	image.create(240, 320, CV_8UC1);//灰度图表示深度图像

	//1.初始化NUI,传入Depth
	HRESULT hr = NuiInitialize(NUI_INITIALIZE_FLAG_USES_DEPTH);
	if (FAILED(hr))
	{
		cout << "NuiInitialize failed" << endl;
		return hr;
	}

	//2.定义事件句柄
	HANDLE nextColorFrameEvent = CreateEvent(NULL,TRUE,FALSE,NULL);
	HANDLE depthStreamHandle = NULL;

	//3.打开KINECT设备的深度图信息通道,用depthStreamHandle保存该流的句柄
	hr = NuiImageStreamOpen(NUI_IMAGE_TYPE_DEPTH, NUI_IMAGE_RESOLUTION_320x240, 0, 2, nextColorFrameEvent, &depthStreamHandle);
	if (FAILED(hr))
	{
		cout << "Could not open color image stream video" << endl;
		NuiShutdown();
		return hr;
	}
	namedWindow("depthImage", CV_WINDOW_AUTOSIZE);

	//4.开始读取深度数据
	while (1)
	{
		const NUI_IMAGE_FRAME *pImageFrame = NULL;

		//4.1.无限等待新的数据,等到后返回
		if (WaitForSingleObject(nextColorFrameEvent, INFINITE) == 0)
		{
			//4.2.从刚才打开数据流的流句柄中得到该帧数据,读取到的数据地址存到pImageFrame
			hr = NuiImageStreamGetNextFrame(depthStreamHandle, 0, &pImageFrame);
			if (FAILED(hr))
			{
				cout << "Could not get depth image" << endl;
				NuiShutdown();
				return -1;
			}

			INuiFrameTexture *pTexture = pImageFrame->pFrameTexture;
			NUI_LOCKED_RECT LockedRect;

			//4.3.提取数据帧到LockedRect,包括两个数据对象(pitch每行字节数,pBits第一个字节地址)
			pTexture->LockRect(0,&LockedRect,NULL,0);  //锁定数据,读数据时,Kinect就不会去修改
			
			//4.4.确定获得的数据是否有效
			if (LockedRect.Pitch != 0)
			{
				//4.5.将数据转换为OpenCV的Mat格式
				//每个深度数据是2个字节,pitch以字节为单位的,地址的偏移是按LockedRect.pBits的地址类型偏移
				
				for (int i = 0; i < image.rows; i++)
				{
					uchar *ptr = image.ptr<uchar>(i);     //第i行的指针

					uchar *pBufferRun = (uchar*)(LockedRect.pBits) + i*LockedRect.Pitch;
					USHORT *pBuffer = (USHORT*)pBufferRun;

					for (int j = 0; j < image.cols; j++)
					{
						ptr[j] = 255 - (uchar)(256 * pBuffer[j] / 0x0fff);   //直接将数据归一化
					}
				}
				imshow("depthImage", image);

				detect.ImageOperation(image, frame_0, num, steadyCount);
			}
			else
			{
				cout << "Buffer length of received texture is bogus" << endl;
			}

			//5.处理完解锁
			pTexture->UnlockRect(0);
			//6.释放本帧数据
			NuiImageStreamReleaseFrame(depthStreamHandle,pImageFrame);
		}
		if (cvWaitKey(20) == 27)
			break;
	}
	//Nui关闭
	NuiShutdown();
	return 0;
}

//二差帧法检测运动目标
void FrameSubtractionKinect::ImageOperation(Mat& depthimage, Mat& frame_0, int& num, int& steadyCount)
{
	Mat erodeimage;
	Mat background, foreground, foreground_BW;

	if (num == 1)
	{
		background = depthimage.clone();
		frame_0 = background;
	}
	else
	{
		background = frame_0;
		frame_0 = depthimage.clone();
	}

	absdiff(depthimage, background, foreground);
	erode(foreground, erodeimage, getStructuringElement(MORPH_RECT, Size(7, 7)));
	threshold(erodeimage, foreground_BW, 15, 255, 0);

	//imshow("foreground", foreground);
	//imshow("ErodeImage", erodeimage);
	imshow("foreground_BW", foreground_BW);

	num++;
	if (num > 2000000000) num = 10;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

OpenCV之帧差法检测运动目标

今天的目标是用OpenCV实现对运动目标的检测,这里选用三帧帧差法。代码如下:...
  • DY580C
  • DY580C
  • 2014年06月29日 23:19
  • 2558

【Kinect】5th-Kinect深度图像采集和Opencv差帧法运动目标检测

Kinect深度图像采集和Opencv差帧法运动目标检测#include #include #include #include using namespace std; using...
  • weixin_36688519
  • weixin_36688519
  • 2017年02月22日 22:34
  • 293

KINECT+opencv(1)将骨骼图像转化为深度图像后姿势识别

KINECT+opencv将骨骼图像转化为深度图像后姿势识别环境:kinect1.7+opencv2.4+vc2015 使用kinect获取三维空间内的骨骼图像并转换为深度图像坐标绘制 对二维的图像进...
  • Daky_u
  • Daky_u
  • 2016年05月07日 17:15
  • 2666

深度图像

深度图像(depth image)也被称为juli
  • sdau20104555
  • sdau20104555
  • 2014年11月03日 14:37
  • 13188

运动目标检测--帧间差分法

一、原理介绍     摄像机采集的视频序列具有连续性的特点。如果场景内没有运动目标,则连续帧的变化很微弱,如果存在运动目标,则连续的帧和帧之间会有明显地变化。     帧间差分法(Temporal ...
  • tiemaxiaosu
  • tiemaxiaosu
  • 2016年06月24日 09:31
  • 5505

C++利用帧差法背景差分实现运动目标检测(opencv)

帧差法、光流法、背景减除法 运动目标检测是指在序列图像中检测出变化区域并将运动目标从背景图像中提取出来。通常情况下,目标分类、跟踪和行为理解等后处理过程仅仅考虑图像中对应于运动目标的像素区域,因此运...
  • xiao__run
  • xiao__run
  • 2017年08月07日 15:37
  • 2275

OpenCV+kinect1.0手语识别(一) 环境配置+彩色流深度流骨架流的处理

本人学生一枚,在做手语识别,便开了个栏,权当“科研日志”了~ 一、环境配置        我的环境是:Opencv2.4.9+kinect1.0+微软1.0的SDK+VS2013        配置较...
  • kai940325
  • kai940325
  • 2015年01月25日 20:51
  • 1169

目标检测之一(传统算法和深度学习的源码学习)

目标检测之一(传统算法和深度学习的源码学习) 本系列写一写关于目标检测的东西,包括传统算法和深度学习的方法都会涉及到,注重实验而不着重理论,理论相关的看论文去哈,主要依赖opencv。 一、目标检测有...
  • baolinq
  • baolinq
  • 2017年11月20日 10:05
  • 898

OpenNI+OpenCV对Kinect采集的彩色图和深度图进行滤波

平台:Windows 7 x86,OpenCV2.4.9,OpenNI1.5.4.0,VS2010         采用了4种方式对彩色图和深度图进行滤波,分别为均值滤波、高斯滤波、中值滤波和双边滤波...
  • kh1445291129
  • kh1445291129
  • 2015年03月23日 23:16
  • 1973

运动目标检测--背景减法

y
  • tiemaxiaosu
  • tiemaxiaosu
  • 2016年06月24日 09:30
  • 2741
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Kinect深度图像采集和Opencv差帧法运动目标检测
举报原因:
原因补充:

(最多只允许输入30个字)