对角阵、特征值与特征向量

本文介绍了如何通过特征值和特征向量将矩阵转化为对角阵,以简化计算矩阵的高次幂。文章以解决Markov链的n步转移概率问题为例,详细阐述了从单位矩阵、逆矩阵到矩阵对角化的过程,以及特征值和特征向量在矩阵运算中的作用。
摘要由CSDN通过智能技术生成

如何将矩阵 P P P拆分成带有对角阵 Λ \Lambda Λ的形式?

本人自动化转通信专业,半年前入了导航的坑。这学期正好有机会系统地学习随机过程这门课,于是不得不重新拾起概率论、线性代数等相关课程。关于线性代数表示本科期间学的不是很扎实,仅仅是会按照老师的要求做题罢了,以至于现在根本不知道该如何运用。本科期间留下的坑没填平,现在不得不重新填坑。 废话不多说,下面开始切入正题。
今天的主题是关于如何求一个矩阵 P P P 的对角阵,这个问题是在求Markov链的 n n n步转移概率 P ( n ) P^{(n)} P(n)时遇到的。老师的问题大概就是说已知一个状态转移矩阵 P P P,如何求它的 n n n次幂,即 P n P^n Pn?刚开始看到这个问题的时候感觉根本无从下手,不要说求矩阵的 n n n次幂了,就算是求矩阵 P 2 P^2 P2,当 P P P 的阶次比较高的时候,就已经是一件令人头大的事(你居然还让我求它的 n n n次幂,简直是丧心病狂)。不过老师随后又说了一句,死算肯定不行,得化成对角矩阵去做。于是在黑板上一顿操作,结果就做出来了。当时听了貌似没有什么问题,但是后来仔细一想,为什么矩阵的对角阵要和特征值和特征向量扯上关系(没错,就是这么简单的问题,各位大神们不要见笑)?都怪我本科的时候没有认真听讲,结果现在。。。。。。好吧,既然遇到了,就不要再留坑了,于是下课以后立马“专研”了起来。
本人当时没有带线性代数的书,也比较懒,所以没有去百度,手头有笔有纸,就直接拿笔在纸上推导了。我首先想到的是 n × n n\times n n×n单位矩阵 E E E,它长成这样
E = ( 1 1 ⋱ 1 ) E= \begin{pmatrix} 1 & & &\\ &1 & &\\ & &\ddots &\\ & & &1 \\ \end{pmatrix} E=111
毫无疑问,这是一个标准的对角阵,里面除了对角线元素是1以外,其余元素都是0。接着本人又继续思考,怎样对矩阵操作一定可以组成单位矩阵 E E E 呢?答案很明显,当然是一个矩阵的逆矩阵乘以它本身,前提条件是如果这个矩阵的逆存在的话。我们设有一个 n × n n\times n n×n可逆矩阵 Q Q Q ,记它的逆矩阵为 Q − 1 Q^{-1} Q1,则有
Q − 1 Q = E       ( 1 ) Q^{-1}Q=E\space\space\space\space\space(1) Q1Q=E     (1)
做进一步的思考,个人感觉单位阵太特殊了,毕竟对角线的元素全是1(一般的三角阵可没有要求对角线元素全是1)。于是想办法对它进行“改造”,考虑这样的一个三角阵
Λ = ( λ 1 λ 2 ⋱ λ n ) \Lambda= \begin{pmatrix} \lambda_1 & & &\\ & \lambda_2 & &\\ & &\ddots &\\ & & &\lambda_n \\ \end{pmatrix} Λ=λ1λ2λn

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值