线性代数(五) | 矩阵对角化 特征值 特征向量

1 矩阵的特征值和特征向量究竟是什么?

矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种升维和降维的变换
直观理解可以看系列超赞视频线性代数-哔哩哔哩_Bilibili

比如A= ( 1 2 2 1 ) \begin{pmatrix}1&2\\2&1\end{pmatrix} (1221) x= ( 1 2 ) \begin{pmatrix}1\\2\end{pmatrix} (12)

我们给x左乘A实际上是对x进行了一次旋转伸缩变换 Ax= ( 5 4 ) \begin{pmatrix}5\\4\end{pmatrix} (54)

而我们如果仅仅是单纯的伸缩变换,而如果A对x仅仅只能伸缩变换,而不能旋转变换,则称为x为矩阵A的特征向量,伸缩变换的倍数即为特征值

2 求特征值和特征向量

(1)写出特征多项式 ∣ E − A ∣ = 0 |E-A|=0 EA=0 求得特征值

(2)代入特征值求解方程组,解即为我们的特征向量

矩阵的迹

矩阵乘积为行列式

在这里插入图片描述

在这里插入图片描述

3 特征值和特征向量的应用

已知A的特征值

A − 1 A^{-1} A1的特征值可求

A的一个多项式特征值可求

所以把我们要求的值转换为A的多项式,进而求出特征值,求出行列式的值

在这里插入图片描述

在这里插入图片描述

4 矩阵的对角化

非对称矩阵对角化

(1)求解特征值和特征向量

(2)特征向量组成我们的相乘矩阵P 特征值作为主对角线上的元素的对角矩阵就是我们对角化的矩阵

在这里插入图片描述

在这里插入图片描述

对称矩阵对角化求正交矩阵

(1)求解特征值值和特征向量

(2)施密特正交化重根对应的特征向量,再单位化所有特征向量

(3)取向量依次组成我们的正交矩阵Q

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值