从特征值,特征向量,对角矩阵,特征值分解到奇异值分解

写在前面:这篇博文可能更适合于学过线性代数的同学
写作背景:最近开始看花书,第二章就讲到了上面几个概念,主要还是奇异值分解,在看的过程中查找了资料,就有了这篇博文。
首先要明确几个概念:特征值特征向量对角矩阵。(为了回忆起这几个概念,我不得不拿起我买的二手考研资料,什么?你问一手的在哪?一手的被我考完卖了。)
特征值特征向量:设A是n阶矩阵,若存在常数λ及非零常数α,使得Aα=λα,称λ为矩阵A的一个特征值,α是属于特征值λ的矩阵A的一个特征向量。
(这样读起来好像没啥用,下面会给一个例子来说明怎么算)
那么怎么求这个特征值和特征向量呢?其实是有一套方法的。但是在科普这个方法之前,还是要再明确几个概念:
特征多项式和特征方程:设A = 在这里插入图片描述
称f(λ)=|λE-A|=在这里插入图片描述
为矩阵A的特征多项式(E是线性代数里面的单位矩阵,就不多说了),称|λE-A|=0为矩阵A的特征方程。
ok,现在看上面的特征值特征向量的概念有Aα=λα,那么我们是不是有(λE-A)α=0,即|λE-A|=0,所以如果方阵A已知,那么我们就能算出特征值。
现在我们看一个具体的例子:求下面这个A的特征值和特征向量

在这里插入图片描述

这个时候就求出了特征值和特征向量。但是其实我们还可以继续让矩阵对角化,那么什么是矩阵对角化呢?看下面图片概念。
在这里插入图片描述
看概念似乎不太明白,我们直接举个例子,还是接着使用上面的求特征值特征向量的例子。直接看例4的(2)就可以了,同时注意看下(3),注意这个问题就好。
在这里插入图片描述

上面的(2)(3)分别说明P-1AP = Λ 以及QTAQ=Λ ,那么是不是也就是说明,A是可以被分解的?我们对上面的两个式子转换下就知道了。PΛ P-1=A,QΛ QT=A.因为我们已经求出来了Λ ,是一个对角矩阵,同时Λ 两边的矩阵也是知道的,那么这样就完成了对A的分解。

上面所有的文字都是对矩阵,也就是A的形状是nn的这种,那么mn的这种(m≠n),会不会也可以被分解呢?答案是可以的,这就是奇异值分解
奇异值分解:有一个m×n的实数矩阵A,我们想要把它分解成如下的形式:
A=UΣVT
其中U和V均为单位正交阵,即有UUT=I和VVT=I(I是单位矩阵),U称为左奇异矩阵,V称为右奇异矩阵,Σ仅在主对角线上有值,我们称它为奇异值,其它元素均为0。上面矩阵的维度分别为U∈Rm×m, Σ∈Rm×n, V∈Rn×n
一般地Σ有如下形式:
在这里插入图片描述
奇异值的求解方法:
正常求上面的U,V,Σ不便于求,我们可以利用如下性质:
在这里插入图片描述
注:需要指出的是,这里ΣΣT与ΣTΣ在矩阵的角度上来讲,它们是不相等的,因为它们的维数不同ΣΣT∈Rm×m,而ΣTΣ∈Rn×n,但是它们在主对角线的奇异值是相等的,即有
在这里插入图片描述
因为上面我们已经得出了AAT和ATA,我们可以对这两个值使用特征值分解,得到的特征矩阵分别为U和V,同时对特征值进行开方,就能得出奇异值。然后由奇异值就能得出Σ。这样就完成了对A的分解。也就是奇异值分解。

写在最后:上面将的是从基本的矩阵特征值特征向量到奇异值分解,讲的也不是很明白,中间可能有些细节不太完善,但是是我理解奇异值分解的完整的思路。具体的奇异值分解的实现以及证明以及有什么用,看后面的博文。(现在还没写,写了放链接)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值