模型调优:交叉验证,超参数搜索(复习17)

模型在测试集上进行性能评估前,通常是希望尽可能利用手头现有的数据对模型进行调优,甚至可以粗略地估计测试结果。通常,对现有数据进行采样分割:一部分数据用于模型参数训练,即训练集;一部分数据用于调优模型配置和特征选择,且对未知的测试性能做出估计,即验证集

交叉验证可以保证所有数据都有被训练和验证的机会,也尽最大可能让优化的模型性能表现的更加可信。下图给出了十折交叉验证的示意图。
这里写图片描述

模型的超参数是指实验时模型的配置,通过网格搜索的方法对超参数组合进行调优,该过程并行计算。由于超参数的空间是无尽的,因此超参数的组合配置只能是“更优”解,没有最优解。通常,依靠网格搜索对多种超参数组合的空间进行暴力搜索。每一套超参数组合被代入到学习函数中作为新的模型,为了比较新模型之间的性能,每个模型都会采用交叉验证的方法在多组相同的训练和测试数据集下进行评估

from sklearn.model_selection import GridSearchCV
from sklearn import svm
from sklearn.datasets import load_iris

iris = load_iris()
X, y = iris.data, iris.target

svc=svm.SVC()
param_grid = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
grid_search = GridSearchCV(svc, param_grid=param_grid, verbose=10)
grid_search.fit(X, y)
print(grid_search.best_estimator_)

这里写图片描述

from __future__ import print_function
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline

categories = ['alt.atheism','talk.religion.misc']
data = fetch_20newsgroups(subset='train', categories=categories)
print("Loading 20 newsgroups dataset for categories:",categories)
print("%d documents,%d categories" % (len(data.filenames),len(data.target_names)))

# Define a pipeline combining a text feature extractor with a simple classifier
pipeline = Pipeline([('vect', CountVectorizer()),('tfidf', TfidfTransformer()),('clf', SGDClassifier())])

parameters = {
    #'vect__max_df': (0.5, 0.75, 1.0),
    #'vect__max_features': (None, 5000, 10000, 50000),
    'vect__ngram_range': ((1, 1), (1, 2)),  # unigrams or bigrams
    #'tfidf__use_idf': (True, False),
    #'tfidf__norm': ('l1', 'l2'),
    #'clf__alpha': (0.00001, 0.000001),
    'clf__penalty': ('l2', 'elasticnet'),
    #'clf__n_iter': (10, 50, 80),
}
# find the best parameters for both the feature extraction and the classifier
grid_search = GridSearchCV(pipeline, parameters,n_jobs=-1, verbose=10)   #用全部CPU并行计算
grid_search.fit(data.data, data.target)

print("Best score: %0.3f" % grid_search.best_score_)

这里写图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
模型评估和是机器学习流程中非常重要的一环。在决策树模型中,需要了解如何评估和模型的性能,以获得更好的预测结果。 模型评估 模型评估是指通过一些指标来评估模型的性能。在决策树模型中,常用的评估指标包括准确率、精确率、召回率、F1值等。其中,准确率是指模型预测正确的样本数占总样本数的比例;精确率是指模型正确预测为正类的样本数占预测为正类的样本数的比例;召回率是指模型正确预测为正类的样本数占实际为正类的样本数的比例;F1值是综合考虑精确率和召回率的指标。 除了单一指标的评估,还可以使用交叉验证的方法进行评估。交叉验证是将数据集分为若干份,每次使用其中一份作为测试集,其余作为训练集,多次进行模型训练和测试,最终得到平均值作为评估指标。这样可以避免因数据集划分不同而导致的评估结果不同的问题。 模型 模型是指寻找最模型参数,以获得最佳的预测结果。在决策树模型中,常用的方法包括网格搜索和随机搜索。 网格搜索是指对一组参数进行排列组合,分别训练模型并评估性能,最终得到最参数组合的方法。例如,在决策树模型中可以节树的深度、叶子节点最小样本数等参数进行网格搜索。 随机搜索是指在参数空间中随机采样一些参数组合,训练模型并评估性能,最终得到最参数组合的方法。与网格搜索相比,随机搜索可以更快地找到最参数组合,但不一定能找到全局最解。 除了参数,还可以采用集成学习的方法来提高模型性能。集成学习是指将多个模型的预测结果进行加权平均或投票,以获得更准确的预测结果。在决策树模型中,常用的集成学习方法包括随机森林和梯度提升树。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值