因为研究需要,仔细看了下代码,看看有什么可以利用的地方。
整体来说Kanade-Lucas-Tomasi Feature Tracker的方法就是首先找去特征点,之后用光流去跟踪的方法。
Opencv中已经有了example,大家可以运行下看效果,同时Homepage:http://www.ces.clemson.edu/~stb/klt/
上有源码,整个的流程跟Opencv差不多。
我们以官网上的原程序中的example1进行分析:(剩下的几个例子整体流程都差不多,仅仅是目的不一样)
首先都是建立两个结构体:
tc = KLTCreateTrackingContext();
KLTPrintTrackingContext(tc);
fl = KLTCreateFeatureList(nFeatures);
tc就是跟踪的中用到的一些参数在选特征点的时候也有用到。
fl就是我们说道德特征点了,包括了特征值和特征点在图像中的位置。
之后使用:
KLTSelectGoodFeatures(tc, img1, ncols, nrows, fl);
使用上面的函数选取特征点
KLTTrackFeatures(tc, img1, img2, ncols, nrows, fl);
使用这个函数在img2中寻找对应的特征点。
一次循环就可以实现跟踪了。
那么出现了一个问题:特征点是怎么定义的:
我们分析KLTSelectGoodFeatures这个函数:
函数中又使用了:

本文详细分析了Kanade-Lucas-Tomasi (KLT) 特征跟踪器的代码实现,重点探讨了特征点的选取和跟踪过程。在OpenCV中已有示例,通过KLTSelectGoodFeatures函数确定特征点,依据像素点的梯度值和阈值min_eigenvalue来提取特征。理解并调整这个阈值对于优化跟踪效果至关重要。
最低0.47元/天 解锁文章
647

被折叠的 条评论
为什么被折叠?



