深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

前言

(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。

SGD

此处的SGD指小批量梯度下降,关于批量梯度下降,随机梯度下降,以及小批量梯度下降的具体区别就不细说了。现在的SGD一般都指小批量梯度下降。

SGD就是每一次迭代计算小批量的梯度,然后对参数进行更新,是最常见的优化方法了即:

G_T = \ nabla _ {\ theta_ {T-1}} {F(\ theta_ {T-1})}

\德尔塔{\ theta_t} =  -  \ ETA * G_T

其中,是学习率,是梯度SGD完全依赖于当前批次的梯度,所以可理解为允许当前批次的梯度多大程度影响参数更新\ ETAG_T\ ETA

缺点 :(正因为有这些缺点才让这么多大神发展出了后续的各种算法

  • 选择合适的学习率比较困难 - 对所有的参数更新使用同样的学习率。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了

 

  • 新闻,并且在某些情况下可能被困在鞍点影响并没这么大。感谢@ 冰橙的指正】

 

动量

气势是模拟物理里动量的概念,积累之前的动量来替代真正的梯度公式如下:

= M_T \亩* M_ {T-1} + G_T

\德尔塔{\ theta_t} =  -  \ ETA * M_T

其中,是动量因子\亩

特点:

  • 下降初期时,使用上一次参数更新,下降方向一致,上乘较大的能够进行很好的加速\亩
  • 下降中后期时,在局部最小值来回震荡的时候,,使得更新幅度增大,跳出陷阱梯度\ TO0\亩
  • 在梯度改变方向的时候,能够减少更新总而言之,动量项能够在相关方向加速新元,抑制振荡,从而加快收敛\亩

 

涅斯捷罗夫

nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。将上一节中的公式展开可得:

\德尔塔{\ theta_t} =  -  \ ETA * \亩* M_ {T-1}  -  \ ETA * G_T

可以看出,并没有直接改变当前梯度,所以涅斯捷罗夫的改进就是让之前的动量直接影响当前的动量即M_ {T-1}G_T

G_T = \ nabla _ {\ theta_ {T-1}} {F(\ theta_ {T-1}  -  \ ETA * \亩* M_ {T-1})}

= M_T \亩* M_ {T-1} + G_T

\德尔塔{\ theta_t} =  -  \ ETA * M_T

所以,加上涅斯捷罗夫项后,梯度在大的跳跃后,进行计算对当前梯度进行校正如下图:

动量首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),涅斯捷罗夫项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)

其实,动量项和涅斯捷罗夫项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法

Adagrad

Adagrad其实是对学习率进行了一个约束即:

N_T = N_ {T-1} + G_T ^ 2

\德尔塔{\ theta_t} =  -  \压裂{\ ETA} {\ SQRT {N_T + \小量}} * G_T

此处,对从1到进行一个递推形成一个约束项正则,用来保证分母非0G_TŤ-  \压裂{1} {\ SQRT {\ sum_ {R = 1} ^ T(G_R)^ 2 + \小量}}\小量

特点:

  • 前期较小的时候,regularizer较大,能够放大梯度G_T
  • 后期较大的时候,正则较小,能够约束梯度G_T
  • 适合处理稀疏梯度


缺点:

  • 由公式可以看出,仍依赖于人工设置一个全局学习率
  • \ ETA设置过大的话,会使正则过于敏感,对梯度的调节太大
  • 中后期,分母上梯度平方的累加将会越来越大,使,使得训练提前结束梯度\ TO0

 

Adadelta

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化.Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值即:

N_T = \ NU * N_ {T-1} +(1 \ NU)* G_T ^ 2

\ Delta {\ theta_t} =  -  \ frac {\ eta} {\ sqrt {n_t + \ epsilon}} * g_t

在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:

E | G ^ 2 | _t = \ RHO * E | G ^ 2 | _ {T-1} +(1 \ RHO)* G_T ^ 2

\德尔塔{X_T} =  -  \压裂{\ SQRT {\ sum_ {R = 1} ^ {T-1} \ {三角洲x_r}}} {\ SQRT {E | G ^ 2 | _t + \小量}}

其中,代表求期望。Ë

此时,可以看出Adadelta已经不用依赖于全局学习率了。

特点:

  • 训练初中期,加速效果不错,很快
  • 训练后期,反复在局部最小值附近抖动

 

RMSprop

RMSprop可以算作Adadelta的一个特例:

时,就变为了求梯度平方和的平均数\ RHO = 0.5E | G ^ 2 | _t = \ RHO * E | G ^ 2 | _ {T-1} +(1 \ RHO)* G_T ^ 2

如果再求根的话,就变成了RMS(均方根):

RMS | G | = _t \ SQRT {E | G ^ 2 | _t + \小量}

此时,这个RMS可以就学习作为率的一个约束:\ ETA

\德尔塔{X_T} =  -  \压裂{\ ETA} {RMS | G | _t} * G_T

特点:

  • 其实RMSprop依然依赖于全局学习率
  • RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
  • 适合处理非平稳目标 - 对于RNN效果很好

 

亚当

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率.Adam的优点主要在于经过偏置校正后, - 一次迭代学习率都有个确定范围,使得参数比较平稳公式如下:

= M_T \亩* M_ {T-1} +(1 \亩)* G_T

N_T = \ NU * N_ {T-1} +(1 \ NU)* G_T ^ 2

\帽子{} M_T = \压裂{} M_T {1- \亩^ T}

\帽子{N_T} = \压裂{N_T} {1- \ NU ^ T}

\德尔塔{\ theta_t} =  -  \压裂{\帽子{} M_T} {\ SQRT {\帽子{N_T}} + \小量} * \ ETA

其中,分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望的估计; 是对。的校正,这样可以近似为对期望的无偏估计可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而对学习率形成一个动态约束,而且有明确的范围。公吨N_TE | G_T |E | G_T ^ 2 |\ {帽子} M_T\ {帽子} N_T公吨N_T-  \压裂{\帽子{} M_T} {\ SQRT {\帽子{N_T}} + \小量}

特点:

  • 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
  • 对内存需求较小
  • 为不同的参数计算不同的自适应学习率
  • 也适用于大多非凸优化 - 适用于大数据集和高维空间

 

Adamax

。Adamax是亚当的一种变体,此方法对学习率的上限提供了一个更简单的范围公式上的变化如下:

N_T = MAX(\ NU * N_ {T-1},| G_T |)

\德尔塔{X} =  -  \压裂{\帽子{M_T}} {+ N_T \小量} * \ ETA

可以看出,Adamax学习率的边界范围更简单

那达慕

那达慕类似于带有涅斯捷罗夫动量项的亚当公式如下:

\帽子{G_T} = \压裂{G_T} {1- \ Pi_ {I = 1} ^ T \ mu_i}

= M_T \ mu_t * M_ {T-1} +(1 \ mu_t)* G_T

\帽子{} M_T = \压裂{} M_T {1- \ Pi_ {I = 1} ^ {T + 1} \ mu_i}

N_T = \ NU * N_ {T-1} +(1 \ NU)* G_T ^ 2

\帽子{N_T} = \压裂{N_T} {1- \ NU ^ T}\ {栏} M_T =(1-\ mu_t)* \帽子{G_T} + \ mu_ {T + 1} * \帽子{} M_T

\德尔塔{\ theta_t} =  -  \ ETA * \压裂{\酒吧{} M_T} {\ SQRT {\帽子{N_T}} + \小量}

可以看出,那达慕大会对学习率有了更强的约束,同时对梯度的更新也有更直接的影响。一般而言,在想使用带动量的RMSprop,或者亚当的地方,大多可以使用那达慕大会取得更好的效果。

经验之谈

  • 对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
  • SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠
  • 如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
  • Adadelta,RMSprop,亚当是比较相近的算法,在相似的情况下表现差不多。
  • 在想使用带动量的RMSprop,或者亚当的地方,大多可以使用那达慕大会取得更好的效果


最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了......

损失平面等高线

在鞍点处的比较

引用

[1] 阿达格拉德

[2] RMSprop [讲座6e]

[3] Adadelta

[4] 亚当

[5] 纳达姆

[6] 关于初始化和动力在深度学习中的重要性

[7] Keras 中文文档

[8] Alec Radford(图)

[9] 梯度下降优化算法的概述

[10] 渐变下降只会收敛到最小化

[11] 深度学习:自然

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值