拓扑排序:课程表Course Schedule

原创 2016年05月31日 16:28:56

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.

有向图中是否有环。

拓扑排序
用一个队列维护所有入度为0的节点,每次弹出一个节点v,查看从v可达的所有节点u;
将u的入读减一,若u的入度此时为0, 则将u加入队列。
在队列为空时,检查所有节点的入度,若所有节点入度都为0, 则存在这样的一个拓扑排序 —— 有向图中不存在环。

class Solution {
public:
    bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {

        vector<int> inDgree(numCourses,0);
        map<int, vector<int> >adjNode;

        int len = prerequisites.size();
        for (int i = 0; i < len; i++){
            pair<int, int> p = prerequisites[i];

            if (find(adjNode[p.second].begin(), adjNode[p.second].end(), p.first) == adjNode[p.second].end()){
                adjNode[p.second].push_back(p.first);
                inDgree[p.first]++;
            }
        }

        queue<int> Q;

        for (int i=0; i < numCourses; i++){
            if (inDgree[i] == 0)
                Q.push(i);
        }

        while (!Q.empty()){
            int front = Q.front();
            Q.pop();

            vector<int> adj = adjNode[front];

            for (int i:adj){
                inDgree[i]--;
                if (inDgree[i] == 0){
                    Q.push(i);
                }
            }

        }

        for (int i: inDgree){
            if (i)
                return false;
        }
        return true;
    }


};
版权声明:本文为博主原创文章,未经博主允许不得转载。

拓扑排序:课程表Course Schedule2

https://leetcode.com/problems/course-schedule-ii/class Solution { public: vector findOrder(int n...
  • gao1440156051
  • gao1440156051
  • 2016年05月31日 16:44
  • 413

拓扑排序:课程表Course Schedule

There are a total of n courses you have to take, labeled from 0 to n - 1.Some courses may have prere...
  • gao1440156051
  • gao1440156051
  • 2016年05月31日 16:28
  • 704

拓扑排序 ---排课表----数据结构

  • 2010年06月13日 07:34
  • 414KB
  • 下载

Leetcode 207 Course Schedule 课程表

你需要上n个课程,标记为0~n-1。有些课程有前导课,比如你要上课程0必须先上课程1,我们用一个整数对[0,1]来表示。给出课程的总数和一系列的课程先导关系对,判断是否可能上完所有的课程。...
  • smile_watermelon
  • smile_watermelon
  • 2015年08月10日 18:05
  • 2800

Leetcode 210 Course Schedule II 课程表II

你需要上n个课程,标记为0~n-1。有些课程有前导课,比如你要上课程0必须先上课程1,我们用一个整数对[0,1]来表示。给出课程的总数和一系列的课程先导关系对,返回可以上完所有的课程的上课顺序。可能存...
  • smile_watermelon
  • smile_watermelon
  • 2015年08月14日 16:29
  • 747

数据结构课设拓扑排序源代码(教学计划安排)

  • 2014年09月07日 19:07
  • 375KB
  • 下载

排课程序(拓扑排序)

  • 2012年01月08日 00:04
  • 188KB
  • 下载

【LeetCode】Course Schedule II 解题报告

【题目】 There are a total of n courses you have to take, labeled from 0 to n - 1. Some course...
  • ljiabin
  • ljiabin
  • 2015年05月19日 17:13
  • 8303

【LeetCode】207. Course Schedule

题目There are a total of n courses you have to take, labeled from 0 to n - 1.Some courses may have pre...
  • u011613729
  • u011613729
  • 2016年05月30日 23:40
  • 667

lintcode(616)安排课程

Description: 你需要去上n门九章的课才能获得offer,这些课被标号为 0 到 n-1 。 有一些课程需要“前置课程”,比如如果你要上课程0,你需要先学课程1,我们用一个匹配来...
  • sunday0904
  • sunday0904
  • 2017年05月18日 09:59
  • 836
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:拓扑排序:课程表Course Schedule
举报原因:
原因补充:

(最多只允许输入30个字)