题目
现在你总共有 n 门课需要选,记为 0 到 n-1。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。
可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。
输入: 2, [[1,0]]
输出: [0,1]
解释: 总共有 2 门课程。要学习课程 1,你需要先完成课程 0。
因此,正确的课程顺序为 [0,1] 。
题解
首先我们可以把这道转换成一个图,那么每个结点的入度就是之前要学的课的数量。入度为0则是可以直接选修的课程。我们肯定要先把无选修条件的课程学完,然后再去学习有条件的。这是一道典型的拓扑排序问题。我们要做的是选择一个入度为0的顶点放到队列中并计数,从图中删除顶点所有出边,直到队列为空。判断记录的数字与总科目数是否相同,相同则返回结果数组,不相同则返回空数组。
代码
class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
int[] inDegree = new int[numCourses]; //记录每个点入度的数组
int[] result = new int[numCourses]; //记录结果的输入
int index = 0;
Queue<Integer> queue = new LinkedList<>();
for (int[] i : prerequisites) { //计算每个点的入度
inDegree[i[0]]++;
}
for (int i = 0; i < numCourses; i++) { //将入度为0的点入队
if (inDegree[i] == 0)
queue.add(i);
}
while (!queue.isEmpty()) {
int t = queue.poll();
result[index++] = t;
for (int[] i : prerequisites) {
if (i[1] == t) { //判断图中点的入边是否为出队结点的边,是的话把这条边删掉
inDegree[i[0]]--;
if (inDegree[i[0]] == 0) //判断处理后该点的入度是否为0,是0的话入队列
queue.add(i[0]);
}
}
}
if (index == numCourses) //判断结果集的个数是否和图中所有结点的个数相等
return result;
else
return new int[0];
}
}