关于正交变换和正交矩阵

原创 2006年06月04日 17:30:00
关于正交变换和正交矩阵一点学习笔记:
定义:V是一个欧氏空间,А是V上的线形变换,如果对于任何向量x,y,变换А恒能使的下列等式成立则说А是V上的正交变换。
    定理: А是欧氏空间V上的线形变换,下面满足任意条件都是А成为正交变换的充要条件。1. А使得向量长度保持不变,机对于任何xV(А(x), А(x))=(x,x)
    2.任意一组标准正交基经过А变换后的 基像仍是一组标准正交基。
    3. А在任意一组标准正交基下的矩阵А满足ATA=AAT=I或A-1 = AT
关于应用方面两类常见的正交变换:
1.     平面上的旋转变换
按照平面中的坐标系经过α度旋转得到如图所示的变换:
   А(i) = cosα*I – sinα*j
А(j) = sinα*j + cosα*I
 
 

А(I,j) = (I,j)( cosα,sinα)
(-sinα,cosα)                                           y               y’      x
                   
 j     I     α
|А| =cosα2  + sinα2   = 1
                                                                                                                             icosα
x’
                                                                                                                -jsinα
 
 

2.反射变换                                                                                                j
 
А(i) = I’ = I + 0*j                                         i
А(j) = j’ = 0*I+(-1)j
                                                                                                                          
 

А(I,j) = (I,j)(1, 0)
                  (0,-1)
 
 
下面将其推广到n维空间中
初等旋转变换:nEuclid空间V中取一组标准正交基e1,e2…en
          1
            .
1
 cosα … … … sinα
Rij =           .
                 .
                -sinα… … …   cosα
                                         1
                                               
此时确定的变换为初等旋转变换也叫做Givens变换,具备两个性质①行列式值为1
②是正交变换Rij为正交阵
 
①可以通过下面证明:自己推导令C = cosα, S = sinα
则可以化成
          1
            .
1
 C … … … S
Rij =           .
                 .
                -S… … …   C
                                  1
可以通过分解消元上下角可以消去
|Rij| = 1*   C … … … S
1
 .
           -S… … …   C
                                
再通过内部消去分解可以得到
|Rij| = C    S              = C2+ S2 = cosα2  + sinα2=1
        -S    C
 
 
 

RijTRij =   1                             1
               .                              .
1                         1
      C … … … -S               C … … … S
                    .                             .
                    .                             .
                    S … … …   C               -S … … …C
                                     1                          1
 

             1
            .
1
 C2+S2 … … …C2+S2
Rij =           .                          = I
                 .
                C2+S2… … … C2+S2
                                     1
 
 
还有一个镜象变换图片太难画不搞了,用途可以用于n维空间中将图片进行旋转。提供简单计算公式。后面扫描图片算了画是画死了。

相关文章推荐

矩阵论笔记(三)——欧氏空间与正交变换

包括两种内积空间: (1)实内积空间(欧氏空间) (2)复内积空间(酉空间)本节讲欧氏空间,包括四个部分:(1)欧氏空间 (2)正交性 (3)正交变换与正交矩阵 (4)对称变换与对称矩阵 欧...

由正交矩阵构建的仿射变换矩阵求逆的快速算法

作者:i_dovelemon 来源:CSDN 日期:2015/5/18 主题:仿射变换,正交矩阵,求逆,矩阵乘法引言好久没有写博客了,这段时间一直忙着,今天抽空写下实习的时候遇到的问题,同时继续...

正交矩阵用例设计

  • 2016年09月13日 12:04
  • 1.17MB
  • 下载

正交矩阵定义

  • 2014年06月19日 16:40
  • 1.43MB
  • 下载

线性代数导论17——正交矩阵和Gram-Schmidt正交化

本文是Gilbert Strang的线性代数导论课程笔记。课程地址:http://v.163.com/special/opencourse/daishu.html   第十七课时:正交矩阵和Gram...
  • aihali
  • aihali
  • 2015年04月16日 20:03
  • 629

正交矩阵表.rar

  • 2008年07月08日 10:32
  • 964KB
  • 下载

正交矩阵 directx 有注释 c++

  • 2012年09月29日 09:47
  • 5KB
  • 下载

正交矩阵和Gram-Schmidt正交化

今天我们学习一下正交向量(orthogonal vector)和正交矩阵(orthogonal matrix)。设有一组向量q1,q2…qn,如果任意的q都与其他的q正交,且每个q向量长度都为1,那么...

【线性代数公开课MIT Linear Algebra】 第十七课 正交基和正交矩阵

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~标准正交基与正交矩阵标准正交向量组 orthonomal vectors 彼此正交orthogonal且模...
  • a352611
  • a352611
  • 2015年11月08日 17:01
  • 615

正交矩阵和Gram-Schmidt正交化

在关于投影矩阵的部分,根据Strang的授课内容,我进行简单的归纳总结.知道了投影矩阵是什么,有什么用. 这篇文章仍然是关于投影矩阵的一个应用. 什么是正交矩阵和Gram-Schmidt正交化,相...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:关于正交变换和正交矩阵
举报原因:
原因补充:

(最多只允许输入30个字)