关于正交变换和正交矩阵

原创 2006年06月04日 17:30:00
关于正交变换和正交矩阵一点学习笔记:
定义:V是一个欧氏空间,А是V上的线形变换,如果对于任何向量x,y,变换А恒能使的下列等式成立则说А是V上的正交变换。
    定理: А是欧氏空间V上的线形变换,下面满足任意条件都是А成为正交变换的充要条件。1. А使得向量长度保持不变,机对于任何xV(А(x), А(x))=(x,x)
    2.任意一组标准正交基经过А变换后的 基像仍是一组标准正交基。
    3. А在任意一组标准正交基下的矩阵А满足ATA=AAT=I或A-1 = AT
关于应用方面两类常见的正交变换:
1.     平面上的旋转变换
按照平面中的坐标系经过α度旋转得到如图所示的变换:
   А(i) = cosα*I – sinα*j
А(j) = sinα*j + cosα*I
 
 

А(I,j) = (I,j)( cosα,sinα)
(-sinα,cosα)                                           y               y’      x
                   
 j     I     α
|А| =cosα2  + sinα2   = 1
                                                                                                                             icosα
x’
                                                                                                                -jsinα
 
 

2.反射变换                                                                                                j
 
А(i) = I’ = I + 0*j                                         i
А(j) = j’ = 0*I+(-1)j
                                                                                                                          
 

А(I,j) = (I,j)(1, 0)
                  (0,-1)
 
 
下面将其推广到n维空间中
初等旋转变换:nEuclid空间V中取一组标准正交基e1,e2…en
          1
            .
1
 cosα … … … sinα
Rij =           .
                 .
                -sinα… … …   cosα
                                         1
                                               
此时确定的变换为初等旋转变换也叫做Givens变换,具备两个性质①行列式值为1
②是正交变换Rij为正交阵
 
①可以通过下面证明:自己推导令C = cosα, S = sinα
则可以化成
          1
            .
1
 C … … … S
Rij =           .
                 .
                -S… … …   C
                                  1
可以通过分解消元上下角可以消去
|Rij| = 1*   C … … … S
1
 .
           -S… … …   C
                                
再通过内部消去分解可以得到
|Rij| = C    S              = C2+ S2 = cosα2  + sinα2=1
        -S    C
 
 
 

RijTRij =   1                             1
               .                              .
1                         1
      C … … … -S               C … … … S
                    .                             .
                    .                             .
                    S … … …   C               -S … … …C
                                     1                          1
 

             1
            .
1
 C2+S2 … … …C2+S2
Rij =           .                          = I
                 .
                C2+S2… … … C2+S2
                                     1
 
 
还有一个镜象变换图片太难画不搞了,用途可以用于n维空间中将图片进行旋转。提供简单计算公式。后面扫描图片算了画是画死了。

正交变换——来龙去脉

什么是正交变换?正交变换为何要满足下列条件?正交变换研究什么? 1 表象 2 正交变换:研究”长度不变“ 3 性质 角度,长度,面积不变 4 基本形式 (1)平移变换 ...
  • Wanggcong
  • Wanggcong
  • 2015年02月14日 17:40
  • 3748

正交变换

正交变换
  • jacke121
  • jacke121
  • 2017年02月02日 14:25
  • 520

机器学习第三课第一部分(矩阵方向变换,正交矩阵)

矩阵变换:沿任意轴旋转及其推导 1. 2D中绕原点旋转 设基向量p,q和r分别是朝向+x,+y和+z方向的单位向量。 旋转角度为θ,基向量p,q绕原点旋转,得到新的基向量p`和q` ...
  • akon_wang_hkbu
  • akon_wang_hkbu
  • 2017年08月11日 15:09
  • 146

矩阵论笔记(三)——欧氏空间与正交变换

包括两种内积空间: (1)实内积空间(欧氏空间) (2)复内积空间(酉空间)本节讲欧氏空间,包括四个部分:(1)欧氏空间 (2)正交性 (3)正交变换与正交矩阵 (4)对称变换与对称矩阵 欧...
  • withchris
  • withchris
  • 2017年03月16日 11:38
  • 1009

正交矩阵相乘,范数不变性

记录矩阵F范数、2范数与正交矩阵相乘的范数不变性,有些地方也叫做保范性。首先明确一下正交矩阵A'A=AA'=I 先看矩阵的2范数,即矩阵A的2范数定义为A最大的奇异值。对A做奇异值分解,不妨记作A=...
  • jzwong
  • jzwong
  • 2016年08月17日 11:07
  • 3739

正交矩阵、正规矩阵和酉矩阵

转自:http://blog.csdn.net/alec1987/article/details/7414450 正交矩阵、正规矩阵和酉矩阵 在数学中,正规矩阵 是与自己的...
  • zhaoyin654
  • zhaoyin654
  • 2015年10月15日 16:00
  • 6764

正交矩阵和旋转矩阵之间关系和性质总结

下面是来百度百科的一些定义: 如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵, 若A为正交阵,则满足以下条件: 1) AT是正交矩阵 ...
  • datase
  • datase
  • 2017年07月05日 21:51
  • 3634

对称矩阵、Hermite矩阵、正交矩阵、酉矩阵、奇异矩阵、正规矩阵、幂等矩阵

题目:对称矩阵、Hermite矩阵、正交矩阵、酉矩阵、奇异矩阵、正规矩阵、幂等矩阵         看文献的时候,经常见到各种各样矩阵,本篇总结了常见的对称矩阵、Hermite矩阵、正交矩阵、酉...
  • jbb0523
  • jbb0523
  • 2016年01月27日 21:03
  • 9102

“正交阵”与“特征值和特征向量”

概念:若n阶矩阵A满足ATA=I,则A为正交矩阵,简称正交阵。          ATA=I解释的话就是:                    “A的第i行”*“A的第i列”= 1         ...
  • xueyingxue001
  • xueyingxue001
  • 2016年07月04日 16:15
  • 3287

图像基本知识整理(3)——图像的正交变换

变换是将一个域的特征变换到另一个域,可能使在一个域不突出的特征在另一个域突出。这有助于对有用信号的提取与应用。 一、傅里叶变换 傅里叶变换是一种将时域信号转换到频域的方式,其在图像处理和分析方面有...
  • zx10212029
  • zx10212029
  • 2015年01月27日 22:16
  • 2521
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:关于正交变换和正交矩阵
举报原因:
原因补充:

(最多只允许输入30个字)