优化算法——梯度下降法

一、优化算法概述

 

    优化算法所要求解的是一个问题的最优解或者近似最优解。现实生活中有很多的最优化问题,如最短路径问题,如组合优化问题等等,同样,也存在很多求解这些优化问题的方法和思路,如梯度下降方法。

    机器学习在近年来得到了迅速的发展,越来越多的机器学习算法被提出,同样越来越多的问题利用机器学习算法得到解决。优化算法是机器学习算法中使用到的一种求解方法。在机器学习,我们需要寻找输入特征与标签之间的映射关系,在寻找这样的映射关系时,有一条重要的原则就是使得寻找到的映射结果与原始标签之间的误差最小。机器学习问题归纳起来就是把一个学习的问题转化为优化的问题,机器学习算法的本质就是如何对问题抽象建模,使一个学习的问题变为一个可求解的优化问题。

    优化的算法有很多种,从最基本的梯度下降法到现在的一些启发式算法,如遗传算法(GA),差分演化算法(DE),粒子群算法(PSO)和人工蜂群算法(ABC)。

二、梯度下降法

1、基本概念

    梯度下降法又被称为最速下降法(Steepest descend method),其理论基础是梯度的概念。梯度与方向导数的关系为:梯度的方向与取得最大方向导数值的方向一致,而梯度的模就是函数在该点的方向导数的最大值。对于一个无约束的优化问题: ,例如

如图,在处的切线。显然在处函数取得最小值。沿着梯度的方向是下降速度最快的方向。具体的过程为:初始时,任取的值,如取,则对应的。利用梯度下降法,其中为学习率,可以取固定常数。如取,则,对应的,类似的,对应的。算法终止的判断准则是:,其中是一个指定的阈值。梯度的更新公式为:

2、算法流程

梯度下降法的流程:

1、初始化:随机选取取值范围内的任意数

2、循环操作:

       计算梯度;

       修改新的变量;

       判断是否达到终止:如果前后两次的函数值差的绝对值小于阈值,则跳出循环;否则继续;

3、输出最终结果

    与梯度下降法对应的是被称为梯度上升的算法,主要的区别就是在梯度的方向上,一个方向是下降最快的方向,相反的就是梯度上升最快的方法。主要用来求解最大值问题:。梯度的更新公式为:

下面以为例,给出一下的Java程序:

public class SteepestDescend {
	public static double alpha = 0.5;// 迭代步长
	public static double e = 0.00001;// 收敛精度

	public double x0;
	public double y0;

	public double getY(double x) {
		return (x * x - 3 * x + 2);
	}

	public double getDerivative(double x) {
		return (2 * x - 3);
	}

	public void init() {
		x0 = 0;
		y0 = this.getY(x0);
	}

	public double getSteepestDescend() {
		double min = 0;
		double x = x0;
		double y = y0;
		double y1;
		double temp = 0;
		/*
		 * 做梯度运算
		 */
		while (true) {
			temp = this.getDerivative(x);
			x = x - alpha * temp;
			y1 = this.getY(x);
			if (Math.abs(y1 - y) <= e) {
				break;
			}
			y = y1;
			min = y;
		}
		return min;
	}
}

主函数:

public class TestMain {
	public static void main(String args[]) {
		double min;
		SteepestDescend sd = new SteepestDescend();
		sd.init();
		min = sd.getSteepestDescend();
		System.out.println("最小值:"+ min );
	}

}


 

### 遗传算法梯度下降法的结合方法 遗传算法(Genetic Algorithm, GA)是一种基于自然选择和进化机制的全局优化算法,而梯度下降法(Gradient Descent, GD)则是一种经典的局部优化技术。两者的结合可以充分利用GA的全局搜索能力和GD的快速收敛特性。 #### 结合方式 一种常见的结合策略是在遗传算法中引入梯度信息来加速个体适应值的计算过程。具体来说,在每一代种群演化过程中,对于某些选定的个体,可以通过梯度下降进一步调整其参数以提高精度[^1]。这种方法既保留了遗传算法探索解空间的能力,又利用了梯度下降法在局部区域内的高效性。 另一种方式是采用混合编码方案,其中部分变量由连续型表示以便于应用梯度下降,其余保持离散形式供遗传操作使用[^2]。 ```python import numpy as np from scipy.optimize import minimize def hybrid_ga_with_gradient(population_size=50, generations=100): population = initialize_population(population_size) for generation in range(generations): fitness_scores = evaluate_fitness(population) # Select top individuals based on their fitness scores. selected_individuals = select_top_individuals(fitness_scores) # Apply gradient descent to refine these selections locally. refined_solutions = [] for individual in selected_individuals: result = minimize(objective_function, individual, method='BFGS') refined_solutions.append(result.x) # Combine results back into the main population or replace worst performers. combine_or_replace(population, refined_solutions) best_solution = find_best_in_final_generation(population) return best_solution ``` 此代码片段展示了如何在一个简单的框架下实现这种组合:通过标准的选择、交叉变异流程生成新代之后再对优秀成员执行一次精确化步骤——即调用`scipy.optimize.minimize()`函数完成局部寻优工作。 #### 应用场景 此类集成方法特别适合解决那些目标函数复杂且存在多个极值点的问题,比如神经网络权重初始化阶段或者控制工程领域里的路径规划任务等情形下的多模态优化问题。 #### 比较分析 | 特性 | 遗传算法 | 梯度下降法 | |-------------------|----------------------------|---------------------------| | **优点** | 能够有效应对高维数、非线性和不连续的目标函数;不易陷入局部最优 | 收敛速度快;适用于平滑可微分的目标函数 | | **缺点** | 计算成本较高;可能需要较长的时间才能找到满意的解决方案 | 对初始猜测敏感;容易卡住于次优解 | 尽管单独使用的两种算法各有千秋,但当它们被巧妙地融合在一起时,则能扬长避短从而获得更佳的整体表现效果。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值