最优化方法总结——梯度下降法、最速下降法、牛顿法、高斯牛顿法、LM法、拟牛顿法

目录

1 最优化方法的结构

2 常用最优化方法对比分析

3 相关计算公式


1 最优化方法的结构

        最优化问题的一般形式为:

min f(x)
s.t. x\in X

其中x为决策变量,f(x)是目标函数,X为约束集或可行域。特别地,如果X=R^n,则最优化问题成为无约束最优化问题。

        最优化方法通常采用迭代法求它的最优解,其基本思想是:给定一个初始点x_0,按照某一迭代规则产品一个点列{ x_n},使得当{ x_n}是有穷点列时,其最后一个点是最优化模型问题的最优解。迭代规则由迭代公式决定,迭代公式的基本表示形式如下:

x_{k+1}=x_k+\alpha _kd_k

        式中,\alpha _k为步长因子,d_k为搜索方向。在最优化算法中,搜索方向d_kfx_k点处的下降方向,即:

f(x_k+\alpha _kd_k)<f(x_k)

        最优化方法的基本结构如下:

  • 给定初始点x_0
  • 确定搜索方向d_k,即按照一定规则,构造 fx_k点处的下降方向作为搜索方向;
  • 确定步长因子\alpha _k,使目标函数有某种意义的下降;
  • 令 
  • 42
    点赞
  • 299
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
最优化是指在一定的约束条件下,寻找一个使目标函数取得最大值或最小值的过程。梯度下降法牛顿法都是最优化问题中常用的方梯度下降法是一种迭代优化算法,通过计算目标函数的梯度来不断更新参数的值,直到达到某个停止条件。梯度下降法的思想是沿着目标函数梯度的反方向进行参数调整,以逐步接近最优解。它适用于凸函数和可微函数,并且可以用于求解无约束优化问题和约束优化问题的局部最优解。 牛顿法也是一种迭代优化算法,它利用函数的二阶导数信息(Hessian矩阵)来逼近函数的局部性质,从而更快地收敛到最优解。牛顿法在求解方程根或函数的最小值时非常有效。它经常被用于数学建模、机器学习、数据分析等领域中的参数优化问题,比如最小二乘法、逻辑回归、神经网络等模型的参数优化。 需要注意的是,梯度下降法牛顿法在不同情况下的效果可能会有所不同。梯度下降法在参数空间中沿着梯度方向逐步搜索最优解,对于大规模数据集和高维参数空间比较适用。而牛顿法利用了更多的二阶导数信息,对于曲率较大的函数,在局部区域更容易找到最优解。但是牛顿法在计算复杂度和存储空间上可能会有一定的挑战。因此,在实际应用中,我们需要根据具体问题的特点选择合适的优化方
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dfreedom.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值