原文地址:Machine Learning Performance Improvement Cheat Sheet
原文翻译与校对:@姜范波 && 寒小阳
时间:2016年12月。
出处:http://blog.csdn.net/han_xiaoyang/article/details/53453145
声明:版权所有,转载请联系作者并注明出
机器学习最有价值(实际应用最广)的部分是预测性建模。也就是在历史数据上进行训练,在新数据上做出预测。
而预测性建模的首要问题是:
如何才能得到更好的结果?
这个备忘单基于本人多年的实践,以及我对顶级机器学习专家和大赛优胜者的研究。
有了这份指南,你不但不会再掉进坑里,而且会提升性能,甚至在你自己的一些预测难题中取得世界领先水平的结果。
让我们一起来看看吧!
注意,本文的结构基于早些时候另一篇关于改善深度学习性能的指南:如何改善深度学习性能

概述
本备忘单的目的是为你提供一些提升机器学习性能的想法。要获得突破,你所需要的可能就是其中的一个。找到你要的那个,然后回来,再找下一个再提升。
我把这份清单分为4个子主题:
- 基于数据改善性能
- 借助算法改善性能
- 用算法调参改善性能
- 借助模型融合改善性能
清单越往下,你获得的增益可能越小。比如,对问题场景重新设立框架或者更多的数据通常比对最好的算法进行调参得到收益要多。
不总是这样,但通常如此。