【图像算法】高斯混合模型(GMM)

转载 2016年05月30日 16:55:56

高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。

对图像背景建立高斯模型的原理及过程:
- 图像灰度直方图反应的是图像中某个灰度值出现的频次,也可以认为是图像灰度概率密度的估计
- 如果图像所包含的目标区域和背景区域相差比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对应于背景的中心灰度
- 对于复杂的图像,尤其是医学图像,一般是多峰的。通过将直方图的多峰特性看作是多个高斯分布的叠加,可以解决图像的分割问题。

在智能监控系统中,对于运动目标的检测是中心内容,而在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。

背景和前景的概念
- 前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。

建模的基本思想是从当前帧中提取前景,其目的是使背景更接近当前视频帧的背景。即利用当前帧和视频序列中的当前背景帧进行加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,一般的建模后的背景并非十分干净清晰,而高斯混合模型(GMM,Gaussian mixture model)是建模最为成功的方法之一,同时GMM可以用在监控视频索引与检索。

混合高斯模型使用K(++基本为3到5个++) 个高斯模型来表征图像中各个像素点的特征。
- 在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。
- 通观整个高斯模型,他主要是有++方差++和++均值++两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。
- 由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。
- 为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率
- 为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。

混合高斯背景建模原理及实现

前些日子一直在忙答辩的事情,毕业后去了华为,图像处理什么的都派不上用场了。打算分3-4篇文章,把我研究生阶段学过的常用算法为大家和4107的师弟师妹们分享下。 本次介绍混合高斯背景建模算法,还是老样...
  • jinshengtao
  • jinshengtao
  • 2014年05月19日 19:23
  • 39037

图像算法之九:混合高斯模型GMM

一、原理       混合高斯背景建模是基于像素样本统计信息的背景表示方法,利用像素在较长时间内大量样本值的概率密度等统计信息(如模式数量、每个模式的均值和标准差)表示背景,然后使用统计差分(如3σ原...
  • SoaringLee_fighting
  • SoaringLee_fighting
  • 2016年10月06日 14:05
  • 7000

背景建模之高斯混合模型

在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。 前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。 运动物体检测的问题主要分为两类,摄...
  • u014568921
  • u014568921
  • 2015年06月29日 17:57
  • 14518

图像处理之高斯混合模型

图像处理之高斯混合模型   一:概述高斯混合模型(GMM)在图像分割、对象识别、视频分析等方面均有应用,对于任意给定的数据样本集合,根据其分布概率, 可以计算每个样本数据向量的概率分布,从而根据概率分...
  • jia20003
  • jia20003
  • 2017年05月26日 17:15
  • 3126

【机器学习】GMM模型的直观推导(含中间步骤)

GMM模型即高斯混合模型,根据大数定律,在日常生活中,很多概率事件都服从高斯分布,因此GMM模型可以应用在这些概率事件的分析上。GMM模型由K个独立的高斯分布混合而成。我们可以这样直观求解GMM模型...
  • lpsl1882
  • lpsl1882
  • 2016年11月09日 01:43
  • 1143

图像分割之(三)从Graph Cut到Grab Cut

图像分割之(三)从Graph Cut到Grab Cut zouxy09@qq.com http://blog.csdn.net/zouxy09         上一文对GraphCut做了一个...
  • zouxy09
  • zouxy09
  • 2013年01月23日 17:00
  • 99525

图像分割之聚类算法

常见的聚类算法有:kmeans、fuzzy c-means、EM、hierarchical clustering、graph theoretic、self organizing map 参考文章:A...
  • u013089961
  • u013089961
  • 2015年10月15日 09:48
  • 2508

halcon中的分类器之GMM算子全讲解

强大的Halcon的分类器有三种MLP、SVM、GMM,在这里为大家详细介绍GMM,原理的东西自己百度吧,这里主要讲GMM库怎么用,希望对大家有用 creat_class_gmm(); 含义:创建高斯...
  • u012986684
  • u012986684
  • 2016年06月24日 18:16
  • 3841

GMM(Gaussian Mixture Model),高斯混合模型

GMM(Gaussian Mixture Model),高斯混合模型GMM(Gaussian Mixture Model),高斯混合模型(或者混合高斯模型),也可以简写为MOG(Mixture of ...
  • baidu_19562087
  • baidu_19562087
  • 2016年04月29日 15:51
  • 1017

前景背景分离方法(二)高斯混合模型法GMM(Gaussian Mixture Model)

int main() { VideoCapture capture("D:/videos/shadow/use3.MPG"); if( !capture.isOpened() ) { cou...
  • yang6464158
  • yang6464158
  • 2014年10月04日 16:19
  • 2414
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【图像算法】高斯混合模型(GMM)
举报原因:
原因补充:

(最多只允许输入30个字)