【图像算法】高斯混合模型(GMM)

转载 2016年05月30日 16:55:56

高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。

对图像背景建立高斯模型的原理及过程:
- 图像灰度直方图反应的是图像中某个灰度值出现的频次,也可以认为是图像灰度概率密度的估计
- 如果图像所包含的目标区域和背景区域相差比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对应于背景的中心灰度
- 对于复杂的图像,尤其是医学图像,一般是多峰的。通过将直方图的多峰特性看作是多个高斯分布的叠加,可以解决图像的分割问题。

在智能监控系统中,对于运动目标的检测是中心内容,而在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。

背景和前景的概念
- 前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。

建模的基本思想是从当前帧中提取前景,其目的是使背景更接近当前视频帧的背景。即利用当前帧和视频序列中的当前背景帧进行加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,一般的建模后的背景并非十分干净清晰,而高斯混合模型(GMM,Gaussian mixture model)是建模最为成功的方法之一,同时GMM可以用在监控视频索引与检索。

混合高斯模型使用K(++基本为3到5个++) 个高斯模型来表征图像中各个像素点的特征。
- 在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。
- 通观整个高斯模型,他主要是有++方差++和++均值++两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。
- 由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。
- 为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率
- 为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。

相关文章推荐

聚类算法之GMM聚类算法

上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM)。事实上,GMM 和 k-means 很像,不过 GMM...

高斯混合模型(GMM)实现和可视化

高斯分布公式及图像示例 高斯分布概率密度热力图 高斯混合模型实现代码 高斯混合模型聚簇效果图

【机器学习】高斯混合模型GMM和EM算法

百度百科:高斯混合模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,它是一个将事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。       高斯混合模型(GMM),顾...

银行系统3(功能又强大了哟 增加了些功能(例如改密码)还在优化中。)

// 121226 银行系统3.cpp : 定义控制台应用程序的入口点。 // /* * Copyright (c) 2012, 烟台大学计算机学院 * All ...

NetSH使用方法

想在W2K下快速的改变IP,使用习惯性的Router、Switch命令行进行配置吗?那就使用NetSH吧,NetSH是什么?      Netsh是Windows 2000/XP/2003操作系统自身...

VS2010编译错误:是否忘记了向源中添加“#include "stdafx.h(转)

错误描述:fatal error C1010: 在查找预编译头时遇到意外的文件结尾。是否忘记了向源中添加“#include "stdafx.h"”? 错误分析:    此错误发生的原因是编译器在...

netsh 操作实践

1. netsh wlan show profiles --查看配置文件 C:\Users\Administrator>netsh wlan show profiles 接口 无线网络连接 上的配置...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)