泰勒展开式的推导

转载 2016年05月30日 13:51:02
 泰勒展开式真是个好东西。可以很方便的把一个函数展开成幂级数。即


   当△x相当小的时候。这种计算方式简单又相当准确。可以从心里感悟到数学美。此外,二阶近似又比线性近似提高了一个级别的精确度。可以从心灵里感悟到近似函数典线努力的往原本的函数典线靠近。可想而知,再提高阶数,就更精确了。
当把阶数拓展到n阶(很大,甚至到无穷),就成了泰勒展开式了。这样的好东西,是怎么推导出来的呢?
在《直来直去微积分》看到了这个推导过程(在第10章,本文不是原创,只是一个学习笔记 ~_~)。
之前也思考了一下这个,但是没有什么太大的收获。现在知道了,原来是从微积分基本定理:泰勒展开式的推导





 
接下来公式的整理,就交给你啦。~_~
关于那最后一项,有好多重积分的,还有关于泰勒展开式的余项。这个你就自己去百度百科里搜索一下“泰勒公式”、“泰勒公式余项”。~_~


相关文章推荐

异步赠书:AI专栏(AI圣经!《深度学习》中文版)

今天小编开启了大咖重磅新书赠送活动,如果你热爱读书、热爱技术,参与到异步赠书活动中来,都有机会得到新书中的一本哦~~ 敲重点:        活动规则:试读样章,评论区留言说一下你对本书的...

2011 考研

高等数学之可微,可导,可积与连续之间的关系

高数的精髓,这个可以算是一个点,接下来我们就要讲解一下这些点之间的关系(笔记)

通过泰勒展开式计算反正弦函数

我们知道任何收敛的函数都可以通过泰勒公式展开,通过这个思路我们便可以方便的对一些没有解析表达式的函数求解反函数,泰勒展开的相关知识可以翻阅信号与系统相关书籍。在这里举例计算反正弦函数。 我们知道反正弦...

泰勒展开式

泰勒展開式   a         線性函數是一非常簡單的函數,函數值可很容易求出。在一小區間以一線性函數來逼近一函數,在實際應用時很重要。不但如此,即使在較高等的數學分析中也很重要。 ...

泰勒级数定义及相关展开式

泰勒级数、欧拉公式、三角函数泰勒级数的定义:若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为:其中:,称为拉格朗日余项。以上函数展开式称为泰勒级数。泰勒级数...

【转】泰勒展开式与人生意义

【转】泰勒展开式与人生意义最近重温了一下泰勒展开的相关知识,搜到了下文,觉得茅塞顿开,特Record之~

泰勒级数定义及相关展开式

泰勒级数、欧拉公式、三角函数 泰勒级数的定义: 若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为: 其中:,称为拉...

机器学习笔记1—泰勒展开式和牛顿法

机器学习笔记1—泰勒展开式和牛顿法写在前面:自学机器学习的菜鸟一枚,希望通过记录博客的形式来记录自己一点点的进步~ 下面都是学习过程中自己的一些思考和学习,希望大神们批评指正。1.1 泰勒展开式1....
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)