有不少博客讲Caffe多标签输入的问题,但总觉得讲的不够透彻,在实践角度上没有给出详细的指导,所以本文力求能给出详细的实践过程和说明。
Caffe多标签输入常用的的方法有以下几种:
1. 修改Caffe源码使其支持多标签输入,参考CSDN博客《caffe 实现多标签输入(multilabel、multitask)》
2. HDF5 + Slice Layer,HDF5支持多标签,但Caffe在读取HDF5时会将所有数据一次性预读进内存中,在数据量较大时就对内存有较高要求了;也可以对数据分片,通过在prototxt文件中加入Slice Layer层使Caffe依次读取每个数据分片。
3. 使用两个data输入(例如两个LMDB,一个存储图片,一个存储多标签),然后修改prototxt文件配置两个data layer。
本文只讨论上面第三种方法支持多标签输入。Caffe中单标签LMDB的创建可以通过自带的脚本很方便的实现,但多标签LMDB的创建并不像单标签那样简单易用,需要使用者对Caffe的Data Layer有足够的了解,对于大多数将Caffe作为一个黑盒的使用者而言,这个问题是非常麻烦的。不过该问题已经纳入了Caffe developer的讨论中了,相信不久后Caffe就能方便快速的进行多标签数据的准备了。
多标签的场景下,数据是 N x H x W x C 的一个4维的blob,对应的标签是 N x M x 1 x 1的一个4维的blob。我们通常通过如下几个步骤来进行数据准备:
创建图片LMDB
使用下面的代码创建两个图片LMDB:
- train_data_lmdb - 用于训练的图片LMDB
- val_data_lmdb - 用于测试的图片LMDB
# 生成训练图片列表文件,即将tarin_images_dir目录下所有图片的路径写入temp.txt文件
find tarin_images_dir -type f -exec echo {} \; > temp.txt
# 在temp.txt文件中每一行后追加伪标签,伪标签起占位符作用,实际并不使用
sed "s/$/ 0/" temp.txt > train_images.txt
# 根据train_images.txt创建train_data_lmdb
$CAFFE_HOME/build/tools/convert_imageset -resize_height=256 -resize_width=256 / train_images.txt train_data_lmdb
# 计算图片均值
$CAFFE_HOME/build/tools/compute_image_mean train_data_lmdb mean.binaryproto
上面的代码用来生成train_data_lmdb,接下来修改代码生成val_data_lmdb.
创建标签LMDB
使用下面的代码创建两个标签LMDB:
- train_label_lmdb - 用于训练的标签LMDB
- val_label_lmdb - 用于测试的标签LMDB
读入每幅图片的多标签,生成标签LMDB,注意图片LMDB和标签LMDB中的顺序一致,创建LMDB的部分python
代码如下:
import sys
import numpy as np
import lmdb
caffe_root = '/home/xinxin/caffe/'
sys.path.insert(0, caffe_root + 'python')
import caffe
# 根据多标签的位置选择从数据库、文件等中读取每幅图片的多标签,将其构造成一维的np.array类型,并追加入all_labels列表
all_labels = []
# Add your code of reading labels here !
# 创建标签LMDB
key = 0
lmdb_path = "/home/xinxin/dl-vsearch/2016-6-27/train_label_lmdb"
env = lmdb.open(lmdb_path, map_size=map_size)
with env.begin(write=True) as txn:
for labels in all_labels:
datum = caffe.proto.caffe_pb2.Datum()
datum.channels = labels.shape[0]
datum.height = 1
datum.width = 1
datum.data = labels.tostring() # or .tobytes() if numpy < 1.9
datum.label = 0
key_str = '{:08}'.format(key)
txn.put(key_str.encode('ascii'), datum.SerializeToString())
key += 1
上面的代码用来生成train_label_lmdb,接下来修改代码生成val_label_lmdb.
修改prototxt文件
上面我们已经创建了四个数据集train_data_lmdb、val_data_lmdb、train_label_lmdb、val_label_lmdb,并且计算了图片均值mean.binaryproto。
接下来就是修改神经网络deploy.prototxt使其支持多标签训练。由于有四个数据集,我们只需要在deploy.txt中加入四个data layers,分别用来配置这四个数据集。需要注意的是在标签lmdb对应的data layer的参数transform_param中通过scaling参数对label进行缩放,该操作的作用是按照Sigmoid Cross Entropy Loss函数的要求将label范围从[0,255]正则化到[0,1](根据采用的多标签Loss函数的要求,scaling参数可以修改)。
将deploy.prototxt中原有的data layers修改为如下的四个data layers:
# ------------- 配置训练阶段的图片数据集 ----------------
layers {
name: "data"
type: DATA
top: "data"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 224
mean_file: "data.binaryproto" # 修改为你的均值文件路径
}
data_param {
source: "train_data_lmdb" # 修改为你的图片lmdb路径
batch_size: 32
backend: LMDB
}
}
# ------------- 配置训练阶段的标签数据集 ----------------
layers {
name: "data"
type: DATA
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625 # 根据需求设置标签缩放系数
mean_value: 0
}
data_param {
source: "train_label_lmdb" # 修改为训练集图片lmdb路径
batch_size: 32
backend: LMDB
}
}
# ------------- 配置测试阶段的图片数据集 ----------------
layers {
name: "data"
type: DATA
top: "data"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 224
mean_file: "mean.binaryproto" # 修改为你的均值文件路径
}
data_param {
source: "val_data_lmdb" # 修改为训练阶段的图片lmdb路径
batch_size: 1
backend: LMDB
}
}
# ------------- 配置测试阶段的标签数据集 ----------------
layers {
name: "data"
type: DATA
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625 # 根据需求设置标签缩放系数
mean_value: 0
}
data_param {
source: "val_label_lmdb" # 修改为测试阶段的标签lmdb路径
batch_size: 1
backend: LMDB
}
}
......
# ----------------- 多标签损失函数 -------------------
layers {
name: "loss"
type: SIGMOID_CROSS_ENTROPY_LOSS
bottom: "fc8" # 根据需求配置
bottom: "label"
top: "loss"
}