2017年机器学习几大主要进展汇总!

转载 2018年01月12日 00:00:00

IT派 - {技术青年圈}
持续关注互联网、大数据、人工智能领域
关注
往期精彩回顾

  重大改变!Excel即将接入Python!办公软件也要革命

2017年大数据领域薪资有多高?

女博士实名举报长江学者陈小武性骚扰女学生


摘要: 2017年注定是机器学习快速发展的一年,特别是机器学习商业化的成功是的更多的人积极的投入到机器学习的学习当中。机器学习一定会成为未来的技术,让我们看看这项未来的技术现在发展到何种程度。


很难相信在人工智能和机器学习领域里这一年发生了那么多的事情,很难做一个全面的系统的汇总。尽管如此,我还是尝试性的去做了一个汇总,希望能够帮助大家去回顾一下今天的科技到底发展到了何种程度。

1.Alpha Go Zero:创造者的兴起

如果让我必须选择今年的主要亮点,那就是AlphaGo Zero论文)。这种新方法不仅在一些最有希望的方向上有所改进(如深度强化学习),而且也证实了这种模式可以在没有数据的情况下学习的范式转变(译者认为:这是思想的转变,在商业上,给了那么些没有大量数据的创新者一个机会)。我们最近也看到了Alpha Go Zero正在推广到象棋类的其他游戏。

2.GAN:不要怕,就要GAN

最近的一元研究meta-study发现在GAN相关研究文的告指上存在系错误。尽管如此,不可否的是,GAN继续发挥着它的独到之处,特别是当涉及到图像空间的应用时(例如渐进式GANpix2pix中的条件GANSCycleGans)。

3.深度学习版的NLP:商业化的开端

今年的深度学NLP的天下,特是翻NLP感受到了翻正在简单容易Salesforce提供了一个有趣的非自回方法,可以理完整的句子翻。也更具开性的是Facebook提供的督的方法UPV。深度学也成功的帮助商家推荐系做的更佳的完美。然而,最近的一篇最近的一些展提出了疑,例如kNNDeep Learning相比有多么简单。与GAN研究一,人工智能研究的惊人速度也会致科学严谨性的失,也不足奇。然人工智能的多或大部分展来自深度学习领域,但AIML方面许多其他方面的不断新也应该人关注的。

4.理论的问题:可解释性和严密性

与上面提到的一些问题有些相关的是,多人批评这种方法的理缺乏密性和可解性。就在前不久,阿里·拉希米(Ali Rahimi)在他的NIPS 2017谈话中将AI描述炼金术” Yann Lecun在一不可能很快解决的辩论中迅速作出了回得注意的是,今年在尝试深度学的基上,已看到了很多的努力。例如,研究人正在试图了解神如何深度泛化Tishby信息瓶也在今年作为对某些深度学属性的合理解释进行了长时间辩论。正在今年的职业生涯祝的辛也一直在质疑诸如使反向播的基本问题。佩德·多明戈斯(Pedro Domingos)等知名研究人很快奏,开了使用不同优化技术的深度学方法。Hinton提出的最后一个最近的根本性化是使用(capsule)胶囊原文)作的替代品。

5.服务商的战斗:越来越好的开发体验

如果我们看一下人工智能的工程相关的成果,那么一年来,Pytorch开始挑起热潮,成为Tensorflow的真正挑战,特别是在研究方面。Tensorflow通过在Tensorflow Fold发布动态网络迅速作出反应。大玩家之间的“AI之战”还有很多其他的战斗,其中最激烈的就是围绕着云。所有的主要供应商都已经加紧了,增加了他们在云中的AI支持。亚马逊已经呈现在他们的AWS,大创新,如他们最近的表现Sagemaker构建和部署ML车型。另外值得一提的是,更小的玩家也纷纷涌入.Nvidia最近推出了他们的GPU,这是训练深度学习模式的另一个有趣的选择。所有的这些战斗无疑在未来都将大力推动工业升级。另外,新的ONNX神经网络表示标准化是互操作性的重要和必要的一步。

6.始终有待解决的未来的社会问题

2017年,人工智能方面的社会问题也得到了延续(升级)。伊隆·马斯克(Elon Musk)继续推动我们越来越接近杀手级AI的想法,令许多人感到沮丧。关于人工智能在未来几年会如何影响工作,也有很多讨论。最后,我们看到更多的焦点放在AI算法的可解释性和偏见上。

7.新的战场:机器学习+传统行业

最近几个月来,我一直在从事医学和医方面的人工智能方面的工作。我很高地看到,像保健这样的传统领域的创新速度正在被迅速提高AIML经应用于医学多年,从60年代和70年代的家系叶斯系开始。不,我发现自己引用了几个月前的文章。今年提出的一些最近的新包括使用Deep RLGAN或自编码器来帮助患者断。最近人工智能的集中在精准医学(高度个性化的医疗诊断和治)和基因学上。例如David Blei最新文章使用叶斯推断来预测个体是否具有疾病的遗传倾向,从而解决神模型中的因果关系。所有的大公司都投人工智能在医保健域。Google有几个团队,其中包括Deepmind Healthcare,他在医学人工智能方面提出了一些非常有趣的展,特是在医学影像自化方面。另外,苹果公司也在苹果手表找医保健用程序,而亚马逊也秘密地投于医保健。很明新的空成熟。

Uber AI团队在深度化学的背景下提出了使用遗传算法(GA)的非常有趣的想法。在5文中,团队展示了GA如何成SGD的一个争性替代方案。看到GA复出是件非常有趣的事情,我很高看到在未来几个月里它可以把我们带到哪里。

最后,我最近阅读了关于Libratus如何在挑无限扑克(IJCAI早期论文的一个版本)上击败专的科学。而AlphaGo Zero是一个非常令人兴奋展,事现实中的大多数问题可以更容易地被吸收到像Poker这样的不完善的信息游戏,而不是像GoChess这样的完美信息游戏这就是为什么在这个领域的工作是一个真正令人兴奋的重要推动领域前进。除了上面提到科学文之外,我还建议你去阅读以下两个在不完全信息游中自我玩的深度化学,以及DeepStack人工智能在挑无限制扑克中的。(来自:云栖社区翻译)


-END-

12
01
  Fri

IT派会持续关注互联网、大数据、机器学习和人工智能领域,欢迎加入IT派-{ 技术青年圈 },希望大家更多参与到相互学习交流的过程中,扫描二维码备注IT派进群交流 。

  IT派

阅读原文,有资源共享

相关文章推荐

机器学习(四) - - 发展历程

《机器学习》周志华 清华大学出版社 读书笔记(四)- - 发展历程
  • zmdsjtu
  • zmdsjtu
  • 2016-09-28 15:25
  • 1523

深度学习史上最全总结(文末有福利)

 深度学习史上最全总结(文末有福利) 2015-07-10 张德兵  格灵深瞳 收藏,稍后阅读 已收藏 深度学习(Deep Learning),这是一个在近几...
  • yewei11
  • yewei11
  • 2016-06-24 10:53
  • 1715

2017年【计算机视觉&机器学习&人工智能】领域重要会议 汇总 (持续更新)

国内/外每年都会举办很多计算机视觉(Computer Vision,CV)、 机器学习(Machine Learning,ML)、人工智能(Artificial Intelligence ,AI)领域...
  • electech6
  • electech6
  • 2016-11-09 20:28
  • 20331

机器学习入门一定要避开的几大陷阱

随着人工智能技术对各行各业有越来越深入的影响,越来越多的人准备入门/转向机器学习。我们深信:对于机器学习,任何人都可以学,并且学得很好。   但是在学习的过程中,不可避免会碰到一些问题,下面我们就来...
  • T7SFOKzorD1JAYMSFk4
  • T7SFOKzorD1JAYMSFk4
  • 2017-11-27 00:00
  • 44

机器学习研究及最新进展

  • 2015-05-16 16:43
  • 828KB
  • 下载

计算智能和机器学习的一些研究进展

  • 2017-12-22 15:49
  • 1.78MB
  • 下载

我的2017年文章汇总——机器学习篇

原文链接:点击打开链接摘要: 2018,你跟自己做了约定了吗?为了遇见更好的自己。 近期准备把过去一年写的文章按照分类重新整理推送一遍,包括:“分布式”、“机器学习”、“深度学习”、“NLP”、“Ja...
  • qq_40954115
  • qq_40954115
  • 2018-01-02 14:34
  • 13

盘点:2017年最受欢迎的十大机器学习Python库

本文转自机器之心公众号,由机器之心编译;参与:蒋思源、黄小天、刘晓坤2017 年已经过去,又到了总结的时刻。本文作者把范围限定为机器学习,盘点了 2017 年以来最受欢迎的十大 Python 库;同时...
  • Tw6cy6uKyDea86Z
  • Tw6cy6uKyDea86Z
  • 2018-01-08 00:00
  • 77

2017年最受欢迎的十大机器学习Python库

1. Pipenv 项目地址:https://github.com/pypa/pipenv 2017 年排名第一的 python 库非 Pipenv 莫属。 用于管理依赖项的官方...
  • God_Love_luckysue
  • God_Love_luckysue
  • 2018-01-03 20:32
  • 114

从Pipenv到Luminoth,盘点2017年最受欢迎的十大机器学习Python库

2017 年即将结束,又到了总结的时刻。作者把范围限定为机器学习,盘点了 2017 年以来最受欢迎的十大 Python 库;同时在这十个非常流行与强大的 Python 库之外,本文还给出了一些同样值得...
  • Uwr44UOuQcNsUQb60zk2
  • Uwr44UOuQcNsUQb60zk2
  • 2017-12-27 06:47
  • 100
[startrelatedarticlesad1]

{relatedtitle}

{relateddes}
[endrelatedarticlesad1] [startrelatedarticlesad2] [endrelatedarticlesad2]
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)