尼姆博弈

尼姆博弈:

http://www.cnblogs.com/kuangbin/archive/2011/08/28/2156426.html

题目1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 

可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。 

题目2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 

可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。


对应问题一:

HDU 1850:Being a Good Boy in Spring Festival

http://acm.hdu.edu.cn/showproblem.php?pid=1850

除此之外还要求出先手的人如果想赢,第一步有几种选择

我们将情景设为取苹果,设k[i]表示第i个框里有k[i]个苹果,再设ans = a[i]^a[2]^……^a[n]

那么显然有以下三点规律:

①:当ans==0时为必输态T态(谁面对这种状态谁必输),否则为必赢态S态,其中所有苹果全被取完的状态

就是T态

②:对于T态,无论怎么取都将变为S态,对于S态,一定有方法取成T态,这也是①的证明

③:对于S态每一项k[i],如果ans^k[i]<k[i],就说明可以从k[i]堆中取出一定数量的苹果使其剩下ans^k[i]个苹

果,这样就成功转为了T态(显然(ans^k[i])^(ans^k[i])==0)


#include<stdio.h>
int main(void)
{
	int n, i, k[105], ans, sum;
	while(scanf("%d", &n), n!=0)
	{
		ans = sum = 0;
		for(i=1;i<=n;i++)
		{
			scanf("%d", &k[i]);
			ans ^= k[i];
		}
		for(i=1;i<=n;i++)
		{
			if((ans^k[i])<=k[i])
				sum++;
		}
		if(ans==0)
			printf("0\n");
		else
			printf("%d\n", sum);
	}
	return 0;
}


对应问题2:

HDU 2509:Be the Winner

http://acm.hdu.edu.cn/showproblem.php?pid=2509

与情况1极其相似,若面对T态还是必输,面对S态还是必赢,但是有特例!

如果每一堆苹果要不没有,要不就只有一个,那么当苹果总数为偶数时必赢,否则必输


#include<stdio.h>
int main(void)
{
	int n, i, k[105], ans, flag, sum;
	while(scanf("%d", &n)!=EOF)
	{
		ans = flag = sum = 0;
		for(i=1;i<=n;i++)
		{
			scanf("%d", &k[i]);
			ans ^= k[i];
			if(k[i]>1)
				flag = 1;
			if(k[i]>0)
				sum++;
		}
		if(flag==0)
		{
			if(sum%2==0)
				printf("Yes\n");
			else
				printf("No\n");
		}
		else
		{
			if(ans==0)
				printf("No\n");
			else
				printf("Yes\n");
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值