欢迎转载,但请务必注明原文出处及作者信息。
两层FC层做分类:MNIST
refer: http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html
@author: huangyongye
@date: 2017-02-24
在本教程中,我们来实现一个非常简单的两层全连接网络来完成MNIST数据的分类问题。
输入[-1,28*28], FC1 有 1024 个neurons, FC2 有 10 个neurons。这么简单的一个全连接网络,结果测试准确率达到了 0.98。还是非常棒的!!!
import numpy as np
import tensorflow as tf
# 设置按需使用GPU
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.InteractiveSession(config=config)
1. 导入数据
# 用tensorflow 导入数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
print 'training data shape ', mnist.train.images.shape
print 'training label shape ', mnist.train.labels.shape
training data shape (55000, 784)
training label shape (55000, 10)
2. 构建网络
# 权值初始化
def weight_variable(shape):
# 用正态分布来初始化权值
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
# 本例中用relu激活函数,所以用一个很小的正偏置较好
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# input_layer
X_ = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
# FC1
W_fc1 = weight_variable([784, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(X_, W_fc1) + b_fc1)
# FC2
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_pre = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
3. 训练和评估
# 1.损失函数:cross_entropy
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_pre))
# 2.优化函数:AdamOptimizer, 优化速度要比 GradientOptimizer 快很多
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
# 3.预测结果评估
# 预测值中最大值(1)即分类结果,是否等于原始标签中的(1)的位置。argmax()取最大值所在的下标
correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 开始运行
sess.run(tf.global_variables_initializer())
# 这大概迭代了不到 10 个 epoch, 训练准确率已经达到了0.98
for i in range(5000):
X_batch, y_batch = mnist.train.next_batch(batch_size=100)
train_step.run(feed_dict={X_: X_batch, y_: y_batch})
if (i+1) % 200 == 0:
train_accuracy = accuracy.eval(feed_dict={X_: mnist.train.images, y_: mnist.train.labels})
print "step %d, training acc %g" % (i+1, train_accuracy)
if (i+1) % 1000 == 0:
test_accuracy = accuracy.eval(feed_dict={X_: mnist.test.images, y_: mnist.test.labels})
print "= " * 10, "step %d, testing acc %g" % (i+1, test_accuracy)
step 200, training acc 0.937364
step 400, training acc 0.965818
step 600, training acc 0.973364
step 800, training acc 0.977709
step 1000, training acc 0.981528
= = = = = = = = = = step 1000, testing acc 0.9688
step 1200, training acc 0.988437
step 1400, training acc 0.988728
step 1600, training acc 0.987491
step 1800, training acc 0.993873
step 2000, training acc 0.992527
= = = = = = = = = = step 2000, testing acc 0.9789
step 2200, training acc 0.995309
step 2400, training acc 0.995455
step 2600, training acc 0.9952
step 2800, training acc 0.996073
step 3000, training acc 0.9964
= = = = = = = = = = step 3000, testing acc 0.9778
step 3200, training acc 0.996709
step 3400, training acc 0.998109
step 3600, training acc 0.997455
step 3800, training acc 0.995055
step 4000, training acc 0.997291
= = = = = = = = = = step 4000, testing acc 0.9808
step 4200, training acc 0.997746
step 4400, training acc 0.996073
step 4600, training acc 0.998564
step 4800, training acc 0.997946
step 5000, training acc 0.998673
= = = = = = = = = = step 5000, testing acc 0.98