实变函数/实分析总结

一、概述。

实变函数又叫实分析,整本书满满的证明就讲了一个勒贝格积分。

最为大家所熟知的是用牛顿-莱布尼茨公式算的黎曼积分。但是黎曼积分本身依赖于函数的连续性,像不连续的狄利克雷函数就无法积分了。

为了解决这一问题,勒贝格利用分割值域的方法,使得函数可积。

但是分割出来的值域,只能放在一起,形式集合。

如果我们要求出狄利克雷函数的面积,就需要知道它的边长,也就是长度。

集合本身没有“长度”这一概念,所以需要用测度来得到集合的“长度”。(测度=集合的“长度”)

于是,狄利克雷函数在区间[0,1]的积分=1*m(Q)+0*m(I)。

区间[0,1]的有理数的测度m(Q)=0,区间[0,1]的无理数的测度m(I)=1;所以1*m(Q)+0*m(I)=0。

勒贝格本人举的例子:

假设要数一堆硬币,黎曼积分就是一个一个地数,而勒贝格积分就是先根据硬币的面值分好类,再一小堆一小堆地数。

黎曼积分的局限性:

1、狄利克雷函数不是黎曼可积。

2、积分和极限不能随意交换。

3、反常积分复杂。

4、在实数中积分。

勒贝格积分要研究什么?

1、分割出来的小块->研究集合。

2、小块是实数中的集合->研究欧氏空间的点集。

3、小块的面积->研究测度、可测性。

4、什么样的函数f才能算面积->研究可测函数。

5、新的方法算面积->勒贝格积分。

6、微积分基本定理->不定积分与微分。

二、集合。

1、有限覆盖定理。

有一开区间族B(B1到Bk的并)覆盖了闭区间A,那么可以在B中选出有限个开区间(虚线小圆)来覆盖A。

2、区间套定理。

若干个闭区间相交,而且一个比一个小,最后交集为一点(同心圆的圆心)。

3、对等和基数。

集合1和集合2中的元素一一对应,称为对等。对等的集合基数相同,基数可以衡量集合的个数,但是基数不是一个准确的数,而是一个代号。基数又称“势”。

无限集可以与它的真子集对等(有限集没有这个性质)。对等用~来表示。

如:{正整数全体}~{正偶数全体},令x=正整数,那么正偶数φ(x)=2x。

对等关系具有以下性质:自反性、对称性、传递性。

如果A≠B,但是A~B的真子集,那么B的基数比A大。

伯恩斯坦定理(用于建立对等),如下:

(0,1)  → (0,1)⊆ (0,1] ,(0,1)属于(0,1]的子区间,该子区间与前面的(0,1)对等(即x映射到x)。

(0,1]  → (0,1/2]⊆ (0,1) ,(0,1/2]属于(0,1)的子区间,该子区间与前面的(0,1]对等(即x映射到x/2)。

所以(0,1) ~ (0,1]。

4、可数集合。

全体有理数、正整数是可数集合(所有元素都可以一一列出来)。

一一列出的意思是:如正整数,可以用1,2,3,……,正无穷来列出。

代数数全体为可数集。

有限集和可数集统称为至多可数集。

至多可数个至多可数集的并仍为至多可数集。有限个至多可数集的直积为至多可数集。

可数集是无限集中基数最小的集合。

5、不可数集合。

全体实数R、无理数是不可数集合(不能一一列出所有元素)。

全体实数R的基数为连续基数c,任何一个区间都与R对等,所以任何一个区间都有连续基数。

三、点集。

1、度量空间。

正定性:d(x,y)≥0,且d(x,y)=0当且仅当x=y。

对称性:d(x,y)=d(y,x)。

三角不等式:d(x,z)≤d(x,y)+d(y,z)。

一个集合配备了距离的概念时,称为度量空间。

距离的定义可以有多种,而欧氏距离只有一种。

2、内点、外点、界点、聚点、孤立点。

点集有两种分法:一种是内点、外点、界点,另一种是聚点、孤立点、外点。

红点在圆内,为内点;黄点在圆边界,为界点;蓝点在圆外(不属于E),为外点。

红点和黄点是聚点。

有一集合E=[a,b]并{c}。c点存在去心邻域(黄色区域),均不属于E,则c是孤立点。

有限集没有聚点。

E的界点或聚点可以属于E,也可以不属于E。

E的内点必是E的聚点,但E的聚点可能是E的内点,也可能是E的界点。

3、开核、边界、导集、闭包。

全体内点组成的集合,称为开核。

全体聚点组成的集合,称为导集E'。

全体界点组成的集合,称为边界。

红色部分和蓝色部分为开核,它不包括边界。

边界,就是圆周,但是圆周可以属于圆(红圆实线黑色边界),也可以不属于圆(蓝圆虚线边界)。

导集=开核+边界。

闭包=集合本身+导集。

  4、开集、闭集、完备集。

集合E的每个点都是E的内点,称为开集。如:开区间(a,b)是开集。

集合E的每个点都是E的聚点,称为闭集。如:闭区间[a,b]是闭集,有限集是闭集。

有界闭集是紧集,反之亦然。

E没有孤立点,则E是自密集。有理数Q是自密集。

E=E',则E是完备集。完备集是自密闭集,即没有孤立点的闭集。闭区间[a,b]、R是完备集。

红色部分(包括实线黑色边界)为闭集,它的每一个聚点都属于集合本身。蓝色部分(不包括虚线黑色边界)为开集,它的每一个内点都属于集合本身。

红色部分(包括实线黑色边界)为自密集,它的每一个聚点都属于集合本身。同时,它也是闭集,自密闭集就是完备集。

5、康托尔三分集P的性质。

P是完备集。

P没有内点。因为P的闭包没有内点,所以P是疏朗集。

P的测度为0,P在区间[0,1]的补集的测度为1。

P的基数为c。

康托尔三分集“长度”为0,而基数又是c,也就是里面的点的数量和全体实数一样多。这是一个非常特殊的集合。

康托尔三分集的Matlab代码如下:

function [] = main() 
clear;close all;clc;
cantorSet(0,10,10,10);

function f = cantorSet(ax,ay,bx,by) %康托尔三分集
c=0.001; %横线的最小宽度
d=0.005; %上、下两条横线的间距

if((bx-ax) > c)
	x = [ax,bx];
	y = [ay,by];
	hold on;
	plot(x,y,'LineWidth',2); % 画线一条线
	hold off;

	cx = ax + (bx-ax)/3; %第一条横线从最左点ax,增加1/3长度
	cy=ay-d; % 横线向下递减d

	dx = bx-(bx-ax)/3; % 第二条横线从最右边bx,减少1/3长度
	dy=by-d; % 横线向下递减d

	ay=ay-d; % 横线向下递减d
	by=by-d; % 横线向下递减d

	cantorSet(ax,ay,cx,cy); % 递归画左边横线
	cantorSet(dx,dy,bx,by); % 递归画右边横线
end

结果如下:

四、测度论。

1、内测度和外测度。

内测度,是内填,对应于圆的内接多边形,只要多边形的边数足够多,上确界就能逼近圆的面积。

外测度,是外包,对应于圆的外切多边形,只要多边形的边数足够多,下确界就能逼近圆的面积。

2、外测度的次可数可加性。

因为外测度是外包,要不等于圆的面积,要不大于圆的面积,这就是次可数可加性。而可数可加性就等于圆的面积。对于求面积来说,我们需要的是等于号,而外测度的大于等于并不实用, 所以要在外测度的基础上增加一个卡拉泰奥多里条件,来实现等于号。

3、可测集。

外测度可以从外面包围任意集合,但这不能使得任意集合都可测,于是,外测度需要添加一个条件(卡拉泰奥多里条件):

这样,计算测度时,不需要同时使用内外两种测度,而是只使用外测度,大大简化计算。

 sigma代数

一个集合对于可数并和作差运算是封闭的,称该集合为sigma代数。sigma代表求和,对应于可数并。

封闭的意思是运算之后,仍在该集合里面。

sigma代数是测度论的核心基础。

 

4、可测集类。

可测集有以下几种类型:

a、凡外测度为零之集皆可测,称为零测度集。

b、零测度集之任何子集仍为零测度集。

c、有限个或可数个零测度集之和集仍为零测度集。

d、区间都是可测集合,且mI=I的“长度”。

e、凡开集、闭集皆可测。

f、凡博雷尔集都是L可测集。

五、可测函数。

有界函数是有限函数,反之不真。有限函数的函数值可以取的范围很大,如f=|x|,x属于Rn。

 可以看出,可测函数的定义域为可测集,值域也为可测集,而实数a的取值比较宽泛。

 狄利克雷函数是简单函数。

逐点收敛、一致收敛。

 

 x的n次方不是一致收敛的。

一致收敛可以推出逐点收敛,反之不然。

 叶果洛夫定理:不是一致收敛的函数,去掉一个任意小的子集后,变成一致收敛了。

如f(x)=x的n次方,x属于[0,1]。在x=1时极限为1,在[0,1)区间中极限为0。该函数不是一致收敛的,但是去掉1这个点后,是一致收敛的。

鲁津定理:揭示了可测函数与连续函数的关系。

可测函数去掉测度任意小的子集后,剩下的部分是连续的。

 鲁津定理的逆定理。

一个函数去掉测度任意小的子集后,剩下的部分是连续的,则这个函数是有限可测函数。

依测度收敛。

两个函数的距离(一维的距离)所形成的集合,对这个集合求测度,随着n趋于无穷,这个测度趋于0,就是依测度收敛。依测度收敛的本质是数列极限。

依测度收敛不一定是处处收敛,也不一定是a.e.收敛。

a.e.收敛不一定依测度收敛。

a.e.(almost everywhre)几乎处处收敛。

里斯定理。

勒贝格定理

因为a.e.收敛不一定依测度收敛,所以要增加一些条件来实现依测度收敛,这就是勒贝格定理。

六、积分论。

勒贝格积分的思路:非负简单函数->非负可测函数->一般可测函数。

非负简单函数的勒贝格积分。

非负可测函数的勒贝格积分。

 积分值有限,才是勒贝格可积。

 非负可测而且单调递增,才可以把积分和极限交换顺序。

 积分和求和交换顺序。

 只有非负可测这个条件,也能把积分和极限交换顺序,但是极限是下极限,而且不再是=,而是<=。

一般可测函数的勒贝格积分。

 

 

非负L可积函数F(x)控制了fn(x)的绝对值。fn(x)几乎处处收敛到f(x)。

控制收敛定理也能实现极限和积分交换顺序。

勒贝格积分的几何意义

 

 

富比尼定理:重积分可以转化为累次积分。

因为重积分没法方便的计算,而累次积分就很好算。

  • 115
    点赞
  • 375
    收藏
    觉得还不错? 一键收藏
  • 14
    评论
### 回答1: 实变周民强pdf第三版是一本关于实变函数方面的书籍,主要涵盖了数系、连续函数、测度论以及Lebesgue积分等内容。该书作者周民强是北京大学数学科学学院的一名教授,是国内实变函数学科方面的专家。该书是其多年教学和研究的总结和深化,是高等数学和实变函数方面的重要参考书。 在数系方面,该书系统地介绍了数的基本性质,包括有理数的完备性、戴德金分割定理、柯西收敛准则等,为后续的理论分析打下基础。在连续函数方面,该书讲述了连续函数的各种性质和定理,包括介值定理、零点定理、最大最小值定理等,具有较高的用性和指导意义。 在测度论方面,该书采用了经典的Lebesgue测度和Lebesgue积分理论进行讲解,系统地介绍了测度论的基本概念和性质、重要的测度和可测函数,以及测度和积分的关系等内容。同时,该书还包含了一些高阶的内容,如广义积分、Cantor集、分数维Hausdorff测度等,丰富了读者的知识面。该书不仅适合于数学专业的研究生、本科生、教师等,在物理、工程、计算机等领域的研究者也能从中受益良多。 总之,实变周民强pdf第三版是一本高水平的实变函数方面的参考书籍,其清晰的讲述、严谨的证明和丰富的例题、习题都使得该书成为该领域的必备读物。 ### 回答2: 实变周民强pdf第三版是一本权威的实变分析教材。该书主要分为七个部分,涵盖了实变分析的基础知识、测度论、Lp空间、广义函数、调和分析、复变函数和狄利克雷问题等内容。该书既注重理论证明,又注重具体应用,让读者可以深入理解实变分析的本质,同时也可以掌握际问题的解决方法。 在该书中,作者精心编排章节,深入浅出地阐述了各种实变分析的核心概念和定理,让读者能够深入了解这一领域的内部机理。该书还利用大量的例子和练习题,让读者更好地理解概念和方法,并能够掌握践技能。此外,该书还引用了大量的历史背景和文化背景,让读者了解实变分析的发展历程和背景文化,进一步提高学科理解。 总之,实变周民强pdf第三版是一本涵盖实变分析前沿知识、践应用和历史背景的一本优秀教材。它不仅适合数学专业学生学习和参考,也适合工程技术人员和物理学家等其他领域的专业人士阅读和研究。通过学习这本教材,读者可以更加理解实变分析的本质和内在联系,也能够掌握相关的技术方法和工具,为学术研究和践应用提供有力支撑。 ### 回答3: 实变周民强pdf第三版是一本关于实变函数理论的经典教材。本书主要分为七章,包括集合与映射、度量空间、拓扑空间、完备度量空间、有限测度论、Lebesgue积分与L^p空间以及Hilbert空间与Fourier变换等内容。 该书采用了严谨的证明方法,突出了实变函数理论中的核心思想和重要性质,注重培养学生的数学分析思维能力和证明能力。本书所使用的符号符合国际惯例,易于理解和掌握。 实变周民强pdf第三版适用于硕士研究生和博士研究生课程,也是普通高校本科生学习实变函数理论的优秀教材,同时也适合从事数学研究和教学的专业人士使用。通过学习本书,可以深入理解实变函数理论的基本概念、定理和应用,为后续数学研究和应用打下坚的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值