实变函数/实分析总结

一、概述。

实变函数又叫实分析,整本书满满的证明就讲了一个勒贝格积分。

最为大家所熟知的是用牛顿-莱布尼茨公式算的黎曼积分。但是黎曼积分本身依赖于函数的连续性,像不连续的狄利克雷函数就无法积分了。


为了解决这一问题,勒贝格利用分割值域的方法,使得函数可积。




但是分割出来的值域,只能放在一起,形式集合。

如果我们要求出狄利克雷函数的面积,就需要知道它的边长,也就是长度。

集合本身没有“长度”这一概念,所以需要用测度来得到集合的“长度”。(测度=集合的“长度”)

于是,狄利克雷函数在区间[0,1]的积分=1*m(Q)+0*m(I)。

区间[0,1]的有理数的测度m(Q)=0,区间[0,1]的无理数的测度m(I)=1;所以1*m(Q)+0*m(I)=0。

二、集合。

1、有限覆盖定理。


有一开区间族B(B1到Bk的并)覆盖了闭区间A,那么可以在B中选出有限个开区间(虚线小圆)来覆盖A。

2、区间套定理。


若干个闭区间相交,而且一个比一个小,最后交集为一点(同心圆的圆心)。

3、对等和基数。


集合1和集合2中的元素一一对应,称为对等。对等的集合基数相同,基数可以衡量集合的个数,但是基数不是一个准确的数,而是一个代号。

4、可数集合。

全体有理数、正整数是可数集合(所有元素都可以一一列出来)。

一一列出的意思是:如正整数,可以用1,2,3,……,正无穷来列出。

5、不可数集合。

全体实数R、无理数是不可数集合(不能一一列出所有元素)。

三、点集。

1、内点、外点、界点、聚点、孤立点。


红点在圆内,为内点;黄点在圆边界,为界点;蓝点在圆外,为外点。

红点和黄点是聚点。


有一集合E=[a,b]并{c}。c点存在去心邻域(黄色区域),均不属于E,则c是孤立点。

2、开核、边界、导集、闭包。


红色部分和蓝色部分为开核,它不包括边界。

边界,就是圆周,但是圆周可以属于圆(红圆实线黑色边界),也可以不属于圆(蓝圆虚线边界)。

导集=开核+边界。

闭包=集合本身+导集。

3、开集、闭集、完备集。


红色部分(包括实线黑色边界)为闭集,它的每一个聚点都属于集合本身。蓝色部分(不包括虚线黑色边界)为开集,它的每一个内点都属于集合本身。


红色部分(包括实线黑色边界)为自密集,它的每一个聚点都属于集合本身。同时,它也是闭集,自密闭集就是完备集。

4、康托尔三分集P的性质。

P是完备集。

P没有内点。因为P的闭包没有内点,所以P是疏朗集。

P的测度为0,P在区间[0,1]的补集的测度为1。

P的基数为c。

四、测度论。

1、内测度和外测度


内测度,是内填,对应于圆的内接多边形,只要多边形的边数足够多,上确界就能逼近圆的面积。

外测度,是外包,对应于圆的外切多边形,只要多边形的边数足够多,下确界就能逼近圆的面积。

2、外测度的次可数可加性。

因为外测度是外包,要不等于圆的面积,要不大于圆的面积,这就是次可数可加性。而可数可加性就只有等于圆的面积。

3、可测集。

外测度可以从外面包围任意集合,但这不能使得任意集合都可测,于是,外测度需要添加一个条件(卡拉泰奥多里条件):


这样,计算测度时,不需要同时使用内外两种测度,而是只使用外测度,大大简化计算。

4、可测集类。

可测集有以下几种类型:

a、凡外测度为零之集皆可测,称为零测度集。

b、零测度集之任何子集仍为零测度集。

c、有限个或可数个零测度集之和集仍为零测度集。

d、区间都是可测集合,且mI=I的“长度”。

e、凡开集、闭集皆可测。

f、凡博雷尔集都是L可测集。

五、可测函数。


六、积分论。


七、微分与不定积分。



未完待续。。。




展开阅读全文
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读