特征提取完成

本文介绍了已完成的图像特征提取工作,包括RGB、HSI、NTSC颜色空间特征,Gabor变换纹理特征,灰度共生矩阵和梯度共生矩阵纹理特征等9种方法,共提取了391个特征。下一步工作包括测试各特征效果、分析分类器中特征的贡献率,以及进行特征选择和构建级联AdaBoost分类器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前提取图像区域的颜色纹理特征值包括:

rgbColorFeature     RGB颜色空间特征值      RGB颜色分量的均值,标准差,方差,相关系数  12个
hsiColorFeature     HSI颜色空间特征值      HSI颜色分量的均值,标准差,方差,相关系数  12个    
ntscColorFeature    NTSC颜色空间特征值     NTSC颜色分量的均值,标准差,方差,相关系数 12个    
gaborFeature        gabor变换提取的纹理特征  均值,标准差  
                    特征数量 64=4(频率个数)X8(方向个数)X2(每组提取的纹理特征数量)
CoOcuMatFeature     灰度共生矩阵纹理特征值:'角二阶矩','对比度','相关性','差分矩'
                    '逆差分矩(均匀性)','和平均值','和方差','和熵','熵','差方差','差熵'
                    特征数量 176= 16组位置算子 X 每组位置算子提取11个特征
gglcmsFeature       灰度-梯度共生矩阵纹理特征,采用 roberts 算子提取梯度
                    提取15个特征,分别为:'小梯度优势','大梯度优势','灰度分布不均匀性','梯度分布不均匀性',
                    '能量','灰度平均','梯度平均','灰度方差','梯度方差','相关','灰度熵','梯度熵','混合熵','惯性','逆差距'  
grayDiffStasFeature 灰度差分统计特征值: 对比度,熵,平均值,能量
                    特征数量 64个=16组位置算子,每组位置算子提取4个特征
grlmFeature         灰度行程长度统计方法
                    提取特征:'强调短行程的逆差','强调长行程的逆差','灰度不均匀性','行程长度非均匀性','以行程表示的图像分数'
                    三个方向,共获得15个特征
InvariantFeatures   不变矩特征,三个颜色平面,每个颜色平面提取7个不变矩,共21个特征

 九种方法共提取 391 个特征
 删除特征类别: Harr-like特征、傅立叶变换特征、以及边缘检测特征

特征提取仍需完成的工作:

              1、在最好的情况下,测试每种特征获得的效果,进行比较

               2、分析在强分类器中,单个特征/每种特征的贡献率

               3、 给定一个图像区域与特征索引,获得对应特征值

               4、给定一个图像区、特征方法与特征参数,获得对应特征值

 特征提取完成后,进行特征选择

特征选择过程会实现的比较简单,将七八种方法一一实验

后续的主要工作是基于新的样本结与特征集,构建不同类型的级联AdaBoost分类器

 

 

 当前获得的特征名称如下:

RGB-R-Mean
RGB-G-Mean
RGB-B-Mean
RGB-R-Std
RGB-G-Std
RGB-B-Std
RGB-R-Variance
RGB-G-Variance
RGB-B-Variance
RGB-RG-Correlation
RGB-GB-Correlation
RGB-RB-Correlation
HSI-H-Mean
HSI-S-Mean
HSI-I-Mean
HSI-H-Std
HSI-S-Std
HSI-I-Std
HSI-H-Variance
HSI-S-Variance
HSI-I-Variance
HSI-HS-Correlation
HSI-SI-Correlation
HSI-HI-Correlation
NTSC-Y-Mean
NTSC-I-Mean
NTSC-Q-Mean
NTSC-Y-Std
NTSC-I-Std
NTSC-Q-Std
NTSC-Y-Variance
NTSC-I-Variance
NTSC-Q-Variance
NTSC-YI-Correlation
NTSC-IQ-Correlation
NTSC-

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值