关闭

阅读小结An Improved Deep Learning Architecture for Person Re-Identification

标签: 行人识别计算机视觉深度学习
1565人阅读 评论(8) 收藏 举报
分类:

Author: Ejaz Ahmed,Michael Jones and Tim K. Marks 

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2015_CVPR_paper.pdf


Motivation:

利用神经网络同时提取特征和相似矩阵学习来做reid问题(和图像分类中替代提特征和分类器的性质相同)

神经网络的输入为 一组图片(两张要比较的行人) 输出为相似值。

提出了一层来获得两个input中层特征之间的关系。之后还有patch summary feature。


How:

基本上理解了图,就理解了全文...


一开始采用的tied conv就是share wight的卷积。因为取中层特征的时候大家都一样。

接着到了cross-input neighbourhood 层在论文中有说明,意思是用一张图上(x,y),减去另一张图对应(x-2,x+2),(y-2,y+2)这个临近区域每一个像素值可以得到5*5个值。如果上面一张中层特征图我们称为f,下面我们称为g。那么f-g的话有25张扩大了5*5倍的图,对应的用g-f也有25张5*5的图。

然后再继续做conv。需要注意的是这里两个25张图,之后用的是不同weight的conv(作者只是为了画图方便concat了在一起)

到最后在fully connected再真正concat到一起的。最后才用softmax loss。


欢迎关注知乎专栏 行人重识别

4
0
查看评论

行人检索“An Improved Deep Learning Architecture for Person Re-Identification”

做行人检索的文章,输入是一对图像,网络输出这对图像的相似度值,新引入的网络层包括跨输入邻域差值层,根据图像对的卷积特征图计算局部关联,之后使用加和特征对输出特征图的邻域进行加和,最后计算远距离像素点的关联性。检索包括两部分,特征提取和特征相似度衡量。 传统的特征提取方法:颜色直方图,LBP,Gab...
  • cv_family_z
  • cv_family_z
  • 2015-11-13 13:52
  • 4250

CVPR2015:An Improved Deep Learning Architecture for Person Re-Identificaton

An Improved Deep Learning Architecture nfor Person Re-IdentificationEjaz Ahmed (University of Maryland(College Park)美国马里兰大学帕克分校)这篇文章做了很多工作: - 改进了CV...
  • yuanchheneducn
  • yuanchheneducn
  • 2016-03-30 19:57
  • 1216

行人检索 Partial Person Re-identification ICCV2015

行人检索问题是一个很难得问题,而局部行人检索问题则更加的困难。目前大部分文献都关注整体行人检索,没有考虑遮挡问题。局部行人检索问题如下图所示: 下图所示为我们实际中的检索图像,以及我们手工框出来的输入图像,及对应的库中的图像。 针对局部行人检索问题,我们提出以下框架来解决: 首先是局部对局...
  • cv_family_z
  • cv_family_z
  • 2015-11-17 10:48
  • 2416

【行人识别】Deep Transfer Learning for Person Re-identification

目录(?)[-] 概述网络结构 特征提取代价测试方法 训练方法 监督学习无监督学习 co-training模型1模型2graph regularization求解 数据组织训练超参数 总结 Geng, Mengyue, et al. “Deep Transfer Learning...
  • u011746554
  • u011746554
  • 2017-04-17 10:39
  • 431

论文阅读:Multi-Scale Triplet CNN for Person Re-Identification

中国科技大学的Jiawei Liu等发表在Acm on Multimedia Conference上的论文。作者提出一个多尺度的triplet CNN,在一个数据集Market1501上表现出好的性能。网络结构如下: Triplet loss 主要改进:同时训练了三个不同尺度的网络,对于低尺度用...
  • yuanchheneducn
  • yuanchheneducn
  • 2017-03-02 10:55
  • 899

triplet loss总结

In Defense of the Triplet Loss for Person Re-Identification 贡献:batch hard mining + soft margin triplet loss 实验在Market-1501 and MARS datasets上进行。 ...
  • yuanchheneducn
  • yuanchheneducn
  • 2017-11-15 20:29
  • 422

阅读小结An Improved Deep Learning Architecture for Person Re-Identification

Author: Ejaz Ahmed,Michael Jones and Tim K. Marks  http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2...
  • Layumi1993
  • Layumi1993
  • 2016-07-09 19:28
  • 1565

人体解析--Look into Person: Self-supervised Structure-sensitive Learning

Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing CVPR2017https://arxiv.org/abs/1703.05446 LIP be...
  • zhangjunhit
  • zhangjunhit
  • 2017-06-06 09:33
  • 1816

Deep Metric Learning for Person Re-Identification

Deep Metric Learning for Person Re-Identification(ICPR2014,中国科学院自动化研究所模式识别国家重点实验室:Dong Yi, Zhen Lei, Shengcai Liao and Stan Z. Li)网络结构 实验结果 总结创新点:...
  • yuanchheneducn
  • yuanchheneducn
  • 2016-03-30 11:18
  • 1579

【行人识别】Deep Transfer Learning for Person Re-identification

解决行人识别中的Re-Identification问题:判断两次出现的人是否是同一个人。在Market 1501竞赛中名列榜首。
  • shenxiaolu1984
  • shenxiaolu1984
  • 2016-12-22 16:02
  • 3657
    个人资料
    • 访问:76799次
    • 积分:1153
    • 等级:
    • 排名:千里之外
    • 原创:33篇
    • 转载:0篇
    • 译文:3篇
    • 评论:45条
    文章分类
    关于我