论文解读Face Detection using Deep Learning: An Improved Faster R-CNN Approach

https://arxiv.org/pdf/1701.08289.pdf
FDDB face detection benchmark evaluation

引言:

在物体检测上,R-CNN十分成功,跟随这个工作,我们提出一个新的脸部检测方法,扩展改进Faster R-CNN算法。我们的算法通过结合几个策略,包括特征连接,强负面挖掘(hard negative mining)和多尺度训练等来改进。
最终达到state-of-the-art 的表现

方法:

包含两个部分:RPN(Region Proposal Network)为了生成RoIs(同Faster R-CNN);和一个fast RCNN 网络来区分RoIs是物体(或背景),并调整这些区域的边界。
这里写图片描述
首先我们用WIDER FACE训练模型,并生成hard negatives。然后第二步把这些hard negatives送入训练,然后用FDDB数据集调优。最后我们应用多尺度训练和特征连接策略(feature concatenation strategy)。最后一个额外步骤,我们将检测的边界框转换为椭圆。
下面我们详细讨论这几个关键步骤

特征连接(feature concatenation)

传统RoI pooling是在最后一个特征图上提取RoI。这种方法不总是最优且可能遗漏一些重要特征,因为深层卷积层的特征输出有更广的接受域,导致成为更特征粗糙。我们为了捕获更好的RoI的细节,我们结合了多聚集层的特征图,包括低层与高层。我们合并了多个卷积层的池化结果来生成最后的池化特征。特别的,低层的卷积层都是经过ROI池化和L2正则化。然后合并,缩放,然后用1x1卷积来匹配最后的channels。结构如图:

这里写图片描述

Hard Negative Mining

将未能正确分类的样本标记为困难样本,再一次送入模型中。我们把实际值上的IoU小于 0.5 的区域视为负样本。(its itersection over union (IoU) over the ground truth region was less than 0.5), 在Hard Negative Mining 中, 我们把这些hard negative困难负样本添加到RoIs中来微调模型,并把前景和后景的比率调到1:3左右,和我们在第一步里的比率相同。

多尺度训练

输入多尺度图片训练,经验主义说明多尺度训练让模型更有鲁棒性,提高了在测试集上的表现。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值