关闭

阅读小结:Unsupervised Learning of Visual Representations using Videos

标签: 深度学习视频识别
340人阅读 评论(0) 收藏 举报
分类:

paper link: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html

Unsupervised Learning of Visual Representations using Videos发表于2015ICCV

What:
1. 使用视频中的物体去训练网络。比如:可以作为一个pretrain的结果应用到其他分类任务上。
2. 没有使用到语义监督(semantic supervision),使用的是:
一个视频中跟踪到的图像 应该有相同的特征 因为这两个图像就是同一个物体的。 (“Our key idea is that two patches connected by a track should have similar visual representation in deep feature space since they probably belong to the same object“)

How
1. 网络结果为 Alexnet
2. 输入的是 每次跟踪的 first 和last frame
3. 数据是从Youtube上扒的。采用SURF特征点和 IDT方法,去获得SURF特征点的移动轨迹。然后建立了标准(a. 只有很少的特征点在移动;b. 很多特征点移动了,可能是摄像头在动了),筛去了一部分帧。 然后我们可以对视频放bounding box把物体抠出来。
4. Tracking 使用的是 KCF tracker。
5. 训练网络 用的Loss的是 Triplet Loss。 距离就是1 - normal后的乘积。
6. 一开始迭代过程中使用的是random,150K迭代后 使用hard negative sample
7. 一个正样本对 保留了 top4个hard negative 样本
8. model ensemble

2
0
查看评论

Unsupervised Learning of Visual Representations using Videos

ICCV 2015 project page http://www.cs.cmu.edu/~xiaolonw/unsupervise.html code https://github.com/xiaolonw/caffe-video_triplet这篇文章最大的亮点是 CNN 的 Unsup...
  • cv_family_z
  • cv_family_z
  • 2015-12-08 14:05
  • 1048

PS: Unsupervised Learning of Visual Representations Using Videos___ICCV2015

Unsupervised Learning of Visual Representations Using Videos Xiaolong Wang, Abhinav Gupta 文章链接 目前成功的CNN均使用大量标记的图片序列来进行训练,大量的标注对。本文采用了一种无监督方法,使用了...
  • clarkatsau
  • clarkatsau
  • 2015-11-26 20:15
  • 233

【论文笔记】Unsupervised Learning of Video Representations using LSTMs

这篇文章是深度学习应用在视频分析领域的经典文章,也是Encoder-Decoder模型的经典文章,作者是多伦多大学深度学习开山鼻祖Hinton教授的徒子徒孙们,引用量非常高,是视频分析领域的必读文章。摘要翻译我们使用长短时记忆(Long Short Term Memory, LSTM)网络来学习视频...
  • qq_21190081
  • qq_21190081
  • 2017-03-26 21:21
  • 1064

Unsupervised Learning of Video Representations using LSTMs

了解时间序列对于解决AI集中的许多问题很重要。 最近,使用长时间记忆(LSTM)的复发神经网络 架构(Hochreiter&Schmidhuber,1997)已成功地用于执行各种监督序列学习任务,如语音识别(Graves&Jaitly,2014),机器翻译(Sutskever等,2014; Cho等...
  • xiaofei0801
  • xiaofei0801
  • 2017-06-09 15:51
  • 224

CVPR 2017-01-10

[1] arXiv:1701.02273 [pdf, other] Visual Multiple-Object Tracking for Unknown Clutter Rate 未知杂波频率的视觉 Du Yong Kim Comments: 10 pages, 2 figures, 2...
  • u011171235
  • u011171235
  • 2017-01-11 14:58
  • 3752

论文笔记:Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 这篇论文是为解决natural language processing (NLP)领域的问题。 应用RNN ...
  • baidu_17806763
  • baidu_17806763
  • 2017-03-10 10:24
  • 1139

论文笔记:unsupervised representation learning with deep convolutional generative adversarial networks

1. previous work [generative adversarial nets] paper link: http://arxiv.org/pdf/1406.2661v1.pdf  torch implementation: https://github...
  • lebula
  • lebula
  • 2016-10-18 11:27
  • 1039

特征学习“Building High-level Features Using Large Scale Unsupervised Learning”

摘要:GoogleBrain中特征学习的原理,通过使用未标记的图像学习人脸、猫脸high-level特征,得到检测器。文章使用大数据构建了一个9层的局部连接稀疏自编码网络(模型有1 billion个链接,数据有10 million 个200*200的图像)。使用模型并行化和异步SGD在1000个机器...
  • cv_family_z
  • cv_family_z
  • 2015-06-18 10:27
  • 1479

Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

本文为论文翻译 在这个文章中,我们提出了一个新奇的神经网络模型,叫做RNN Encoder–Decoder,它包括两个RNN。一个RNN用来把一个符号序列编码为固定长度的向量表示,另一个RNN用来把向量表示解码为另外一个符号向量;提出的模型中的编码器和解码器被连接起来用于训练,目的是最大化目标序列...
  • Thinking_boy1992
  • Thinking_boy1992
  • 2016-12-14 14:27
  • 762

《Unsupervised Learning of Depth and Ego-Motion from Video》读书笔记

原文:Unsupervised Learning of Depth and Ego-Motion from Video 实质:用单张图片推理场景结构:SfMLearner 相关作用: 针对端对端视觉里程计 : 今年CVPR的 SfM-Learner。文章的核心思想是利用photometr...
  • weixin_37251044
  • weixin_37251044
  • 2017-12-07 11:09
  • 107
    个人资料
    • 访问:76959次
    • 积分:1155
    • 等级:
    • 排名:千里之外
    • 原创:33篇
    • 转载:0篇
    • 译文:3篇
    • 评论:45条
    文章分类
    关于我