阅读小结:Unsupervised Learning of Visual Representations using Videos

原创 2017年06月10日 19:20:21

paper link: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html

Unsupervised Learning of Visual Representations using Videos发表于2015ICCV

What:
1. 使用视频中的物体去训练网络。比如:可以作为一个pretrain的结果应用到其他分类任务上。
2. 没有使用到语义监督(semantic supervision),使用的是:
一个视频中跟踪到的图像 应该有相同的特征 因为这两个图像就是同一个物体的。 (“Our key idea is that two patches connected by a track should have similar visual representation in deep feature space since they probably belong to the same object“)

How
1. 网络结果为 Alexnet
2. 输入的是 每次跟踪的 first 和last frame
3. 数据是从Youtube上扒的。采用SURF特征点和 IDT方法,去获得SURF特征点的移动轨迹。然后建立了标准(a. 只有很少的特征点在移动;b. 很多特征点移动了,可能是摄像头在动了),筛去了一部分帧。 然后我们可以对视频放bounding box把物体抠出来。
4. Tracking 使用的是 KCF tracker。
5. 训练网络 用的Loss的是 Triplet Loss。 距离就是1 - normal后的乘积。
6. 一开始迭代过程中使用的是random,150K迭代后 使用hard negative sample
7. 一个正样本对 保留了 top4个hard negative 样本
8. model ensemble

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【论文笔记】Unsupervised Learning of Video Representations using LSTMs

这篇文章是深度学习应用在视频分析领域的经典文章,也是Encoder-Decoder模型的经典文章,作者是多伦多大学深度学习开山鼻祖Hinton教授的徒子徒孙们,引用量非常高,是视频分析领域的必读文章。...

谷歌论文阅读:Building High-level Features Using Large Scale Unsupervised Learning

使用大规模无监督的深度机器学习网络进行高级特征学习

特征学习“Building High-level Features Using Large Scale Unsupervised Learning”

摘要:GoogleBrain中特征学习的原理,通过使用未标记的图像学习人脸、猫脸high-level特征,得到检测器。文章使用大数据构建了一个9层的局部连接稀疏自编码网络(模型有1 billion个链...

Neural network (unsupervised learning)-Ch5

  • 2014年09月02日 11:10
  • 2.98MB
  • 下载

【Paper Note】Convolutional Clustering for Unsupervised Learning 论文翻译

Convolutional Clustering for Unsupervised Learning 论文翻译

Stanford 机器学习笔记 Week8 Unsupervised Learning

ClusteringK-Means Algorithm一种经典的聚类算法,步骤很简单,分4步:1.首先随机选择K个聚类中心 2.对于Training Set中的每个点i,计算离i最近的中心c(i),...

【Stanford机器学习笔记】11-Unsupervised Learning

【Stanford机器学习笔记】11-Unsupervised Learning
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:阅读小结:Unsupervised Learning of Visual Representations using Videos
举报原因:
原因补充:

(最多只允许输入30个字)