郑哲东的博客

计算机视觉 行人再识别 person re-ID

阅读小结:Unsupervised Learning of Visual Representations using Videos

paper link: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html

Unsupervised Learning of Visual Representations using Videos发表于2015ICCV

What:
1. 使用视频中的物体去训练网络。比如:可以作为一个pretrain的结果应用到其他分类任务上。
2. 没有使用到语义监督(semantic supervision),使用的是:
一个视频中跟踪到的图像 应该有相同的特征 因为这两个图像就是同一个物体的。 (“Our key idea is that two patches connected by a track should have similar visual representation in deep feature space since they probably belong to the same object“)

How
1. 网络结果为 Alexnet
2. 输入的是 每次跟踪的 first 和last frame
3. 数据是从Youtube上扒的。采用SURF特征点和 IDT方法,去获得SURF特征点的移动轨迹。然后建立了标准(a. 只有很少的特征点在移动;b. 很多特征点移动了,可能是摄像头在动了),筛去了一部分帧。 然后我们可以对视频放bounding box把物体抠出来。
4. Tracking 使用的是 KCF tracker。
5. 训练网络 用的Loss的是 Triplet Loss。 距离就是1 - normal后的乘积。
6. 一开始迭代过程中使用的是random,150K迭代后 使用hard negative sample
7. 一个正样本对 保留了 top4个hard negative 样本
8. model ensemble

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Layumi1993/article/details/73003447
个人分类: 论文阅读
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

阅读小结:Unsupervised Learning of Visual Representations using Videos

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭