摄像机矩阵由P由内参矩阵和外参矩阵组成,对摄像机矩阵进行QR分解可以得到内参矩阵和外参矩阵
在opencv的3D重建中(opencv中文网站中:照相机定标与三维场景重建),对摄像机的内参外参有讲解:
外参:摄像机的旋转平移属于外参,用于描述相机在静态场景下相机的运动,或者在相机固定时,运动物体的刚性运动。因此,在图像拼接或者三维重建中,就需要使用外参来求几幅图像之间的相对运动,从而将其注册到同一个坐标系下面来
内参:下面给出了内参矩阵,需要注意的是,真实的镜头还会有径向和切向畸变,而这些畸变是属于相机的内参的。
摄像机内参矩阵:
fx s x0
K = 0 fy y0
0 0 1
其中,fx,fy为焦距,一般情况下,二者相等,x0、y0为主点坐标(相对于成像平面),s为坐标轴倾斜参数,理想情况下为0
摄像机外参矩阵:包括旋转矩阵和平移矩阵
旋转矩阵和平移矩阵共同描述了如何把点从世界坐标系转换到摄像机坐标系
旋转矩阵:描述了世界坐标系的坐标轴相对于摄像机坐标轴的方向
平移矩阵:描述了在摄像机坐标系下,空间原点的位置
此文中有更详细的解释:
https://blog.csdn.net/baidu_38172402/article/details/81949447
通俗来讲,相机标定分两块:
相机外参:用于描述从世界坐标系变换到相机坐标系,以其为基准,可以描述相机的位置和观测物体的位置为最宏观的坐标系,可以根据实际情况来确定,如果是单目相机,基本可以认为是重叠。单如果是涉及多个相机,比如在图片拼接或者三维重建中,涉及到多个世界坐标系,就需要将世界坐标系进行统一,从而将不同的相机拍摄的图像注册到一个坐标系下来。
相机内参
以下转载自上面的链接
整体的坐标转换如下:世界坐标系转换为像素坐标系
上面的式子也等于:MXw ,其中M成为投影矩阵,是相机内参矩阵和相机外参矩阵的乘积。
其中 f 为摄像机的焦距,单位一般是mm;dx,dy 为像元尺寸;u0,v0 为图像中心。fx = f/dx, fy = f/dy,分别称为x轴和y轴上的归一化焦距.
为更好的理解,举个实例:
现以NiKon D700相机为例进行求解其内参数矩阵:
就算大家身边没有这款相机也无所谓,可以在网上百度一下,很方便的就知道其一些参数——
焦距 f = 35mm 最高分辨率:4256×2832 传感器尺寸:36.0×23.9 mm
根据以上定义可以有:
u0= 4256/2 = 2128 v0= 2832/2 = 1416 dx = 36.0/4256 dy = 23.9/2832
fx = f/dx = 4137.8 fy = f/dy = 4147.3
其中相机的内参和外参可以通过张正友标定获取。通过最终的转换关系来看,一个三维中的坐标点,的确可以在图像中找到一个对应的像素点(为什么?你自己想想矩阵的运算,你就可以知道了),但是反过来,通过图像中的一个点找到它在三维中对应的点就很成了一个问题,因为我们并不知道等式左边的Zc的值。