离散序列的一致性度量方法:动态时间规整(DTW)

动态时间规整(DTW)是一种衡量不等长时间序列相似性的方法,常用于语音识别、动态手势识别等。本文介绍了DTW的基本思想,包括通过动态规划构建矩阵并寻找最优路径,以及归整路径距离的计算方法,并提供了一个具体例子和Matlab代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态时间规整:Dynamic Time Warping(DTW),是一种衡量两个离散时间序列相似度的方法,主要特点是在序列长度不一或x轴无法完全对齐的情况下,用满足一定条件的的时间规整函数描述两者之间的时间对应关系。DTW算法在各种模式匹配任务中被广泛使用,如语音识别、动态手势识别和信息检索等中。

一、算法简述

在数字信号处理领域中,时间序列是数据的一种常见表示形式。对于时间序列处理来说,对于许多的信号处理任务,如图像匹配、视频跟踪和姿态识别等,通常需要度量两个离散序列的相似性。而这一步骤说难不难,说易也不易,这往往需要考虑信号采样、噪声干扰等实际问题。

在很多情况下,单纯的相似性度量方法无法很好度量两个序列的一致性,如在语音识别中经常出现两段时间序列的长度不相等的情况(或下图中的情况),此时从直观上都能观察到,直接使用欧几里得距离、相关系数等方法进行度量并不靠谱,此时点对点运算变得无意义。

这里写图片描述

DTW的主要思路如下:

1.假定两个待匹配的离散数据分别为A={A(1),A(2),…,A(m)}和B={B(1),B(2),…,B(m)},其中下标为1的元素为序列的起点,下标为m/n的元素为序列终点。

2.为了对齐A,B两个序列,这里采用了“动态规划”的方法,首先构造一个m*n的矩阵,用于存放两序列点对点之间的距离(一般可使用欧氏距离),距离越小表明两点之间的相似度越高。

3.该部分是DTW算法的核心,这里把矩阵看成一个网格,算法的目的可总结为寻找一条通过此矩阵网格的最优路径,该路径通过的网格点即为两个离散序列经过对齐后的点对。

4.找到最优路径后,DTW算法定义了一个归整路径距离(Warp Path Distance),通过使用所有相似点之间距离的和,来衡量两个时间序列之间的相似性。

二、归整路径距离计算方法:

计算归整路径(Warp Path)。其形式可表示为:W={w1,w2,…,wK}。其中wk的形式为(i,j),其中i表示的是X中的i坐标,j表示的是Y中的j坐标。

### K-GRAPE 时间序列聚类算法简介 K-GRAPE 是一种基于时间序列特征提取和距离度量时间序列聚类算法。它结合了传统聚类方法的优点,同时针对时间序列数据的特点进行了改进。以下是关于其实现与应用的具体介绍: #### 特征提取阶段 在 K-GRAPE 中,时间序列的特征提取是一个核心环节。通常会采用以下几种技术来表示时间序列的关键特性: - **傅里叶变换 (Fourier Transform)**:用于捕捉周期性模式[^4]。 - **离散小波变换 (Discrete Wavelet Transform, DWT)**:能够有效分离信号的不同频率分量[^5]。 - **统计特征**:如均值、方差、最大最小值等简单描述符。 这些特征会被组合成一个多维向量形式,作为后续聚类的基础输入。 #### 距离度量设计 由于原始欧几里得距离可能无法很好地适应时间序列之间的相似性比较,K-GRAPE 提出了自定义的距离函数。这种距离不仅考虑数值上的差异,还兼顾形状匹配程度以及趋势变化的一致性。具体来说,可以引入 DTW(Dynamic Time Warping 动态时间规整)或者 LCSS(Longest Common Subsequence Problem 最长公共子序列问题),其中后者已经在其他领域得到了广泛应用[^1]。 #### 簇中心更新机制 不同于标准 k-means 方法固定使用质心作为簇代表点的方式,K-GRAPE 设计了一种更加灵活且贴近实际需求的新策略——通过寻找原型序列来进行替代。所谓“原型”,是指那些最能反映所属类别整体特性的成员个体;它们往往具备较高的代表性得分,并且与其他同类对象保持较近的关系链接强度。 ```python import numpy as np from sklearn.cluster import AgglomerativeClustering def calculate_prototype(cluster_members): """ 计算每个cluster内的prototype """ prototypes = [] for members in cluster_members: avg_series = np.mean(members, axis=0) # 取平均值作为一个初步估计 distances = [] # 存储所有member到avg_series的距离 for member in members: distance = dtw_distance(member, avg_series) distances.append(distance) min_index = np.argmin(distances) # 找最近的那个当作最终prototype prototype = members[min_index] prototypes.append(prototype) return prototypes # 假设我们已经有了一个distance matrix 和 labels from clustering algorithm model = AgglomerativeClustering(n_clusters=None, affinity='precomputed', linkage='average') labels = model.fit_predict(distance_matrix) clusters_dict = {i:[] for i in set(labels)} for idx,label in enumerate(labels): clusters_dict[label].append(time_series_data[idx]) prototypes = calculate_prototype(clusters_dict.values()) ``` 以上代码片段展示了如何利用层次聚类的结果进一步挑选出每组的最佳代表实例。 #### 应用场景分析 K-GRAPE 广泛应用于金融预测、医疗健康监测等领域。比如,在股票市场行情走势研究方面,通过对历史价格曲线实施分类操作可以帮助投资者识别潜在的投资机会或风险预警信号;而在患者生理指标监控项目当中,则可辅助医生快速定位异常状态并制定相应治疗方案。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值