Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors
这篇文章提出了一种新的视频表示方法,叫做trajectory-pooled deep-convolutional descriptor(TDD)。他拥有手工设计的特征和深度学习的特征的优点。用深度结构来学习有区分的卷积特征映射。然后用轨迹控制的pooling方法来融合这些卷积特征。
本文设计了两种正则化的方法来转化卷积特征映射,即时空正则化和通道正则化。
我们提的特征的优点:1)能够自动的学习得到高可区分性的特征,2)考虑了时间维的本质特性,引进了轨迹控制策略来采样和pooling深度学习的特征。
改进的轨迹:首先,在8个不同的空间尺度上,用步长为5个像素的格子,密集采样一系列的点。然后,这些被采样的点被密集的光流区域的均值滤波器跟踪。最后,这些缺乏运动信息的静态轨迹被删除,其他有巨

该博客探讨了使用轨迹池化的深度卷积描述符在Action Recognition中的应用,通过结合CNN和轨迹信息来提升识别效果。
最低0.47元/天 解锁文章
449

被折叠的 条评论
为什么被折叠?



