Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors

该博客探讨了使用轨迹池化的深度卷积描述符在Action Recognition中的应用,通过结合CNN和轨迹信息来提升识别效果。

Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors

这篇文章提出了一种新的视频表示方法,叫做trajectory-pooled deep-convolutional descriptor(TDD)。他拥有手工设计的特征和深度学习的特征的优点。用深度结构来学习有区分的卷积特征映射。然后用轨迹控制的pooling方法来融合这些卷积特征。

本文设计了两种正则化的方法来转化卷积特征映射,即时空正则化和通道正则化。

我们提的特征的优点:1)能够自动的学习得到高可区分性的特征,2)考虑了时间维的本质特性,引进了轨迹控制策略来采样和pooling深度学习的特征。

改进的轨迹:首先,在8个不同的空间尺度上,用步长为5个像素的格子,密集采样一系列的点。然后,这些被采样的点被密集的光流区域的均值滤波器跟踪。最后,这些缺乏运动信息的静态轨迹被删除,其他有巨
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值