AVGCN:利用人类注意力引导的图卷积网络进行轨迹预测

行人轨迹预测任务中,AVGCN通过图卷积网络结合人类注意力机制来提高预测精度。论文提出,通过注视数据训练注意网络,分配邻近行人的重要性,并结合视野约束来调节注意力权重,最终应用于轨迹预测,实现了在多个基准上的最优性能。
摘要由CSDN通过智能技术生成
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达

小白导读

论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

摘要

行人轨迹预测是一项关键而又具有挑战性的任务,尤其是在拥挤的场景下。我们认为引入注意机制来推断不同邻居的重要性对于在不同人群大小的场景中精确预测轨迹是至关重要的。在这项工作中,我们提出了一种新的方法,AVGCN,利用基于人类注意力(a表示注意,V表示视野约束)的图卷积网络(GCN)进行轨迹预测。首先,我们训练一个注意网络来估计邻近行人的重要性,利用被试执行鸟瞰人群导航任务时收集到的注视数据。然后,我们将学习到的注意权值通过对行人视野的约束调制到一个轨迹预测网络中,该网络使用GCN来有效地聚合来自邻居的信息。AVGCN还利用变分轨迹预测的方法考虑了行人轨迹的随机性。我们的方法在几个轨迹预测基准上实现了最先进的性能,并在所有考虑的基准上实现了最低的平均预测误差。

论文创新点

这项工作以两种方式应对上述挑战。首先,我们使用一个图结构来表示人群状态。其次,我们使用人类操作员在执行鸟瞰导航任务时获得的注视数据来学习一个网络࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值