高数 07.05 隐函数的求导方法

§

1.F(x,y)P(x0,y0)(1);(2)F(x0,y0)=0;(3)Fy(x0,y0)0F(x,y)=0x0y=f(x),y0=f(x0),dydx=FxFy
,:y=f(x)F(x,y)=0,F(x,f(x))0xFx+Fydydx0(x0,y0)Fy0dydx=FxFy

1.siny+exxy1=0(0,0)y=f(x),dydxx=0,d2ydx2x=0
:F(x,y)=siny+exxy1,Fx=exyFy=cosyxFy|x=0=10dydx=FxFy=exycosyxdydxx=0=e00cos00=1d2ydx2=(exycosyx)x=(exy)x(cosyx)(exy)(cosyx)x(cosyx)2=(exy)(cosyx)+(exy)(siny+1)(cosyx)2d2ydx2x=0=(e0+1)(cos00)+(e00)(sin0+1)(cos00)2=3

§

2.F(x,y,z):(1)P(x0,y0,z0),(2)F(x0,y0,z0)=0(3)Fz(x0,y0,z0)0F(x,y,z)=0(x0,y0)z=f(x,y),z0=f(x0,y0),zx=FxFz,zy=FyFz
:
z=f(x,y)F(x,y)=0,F(x,y,f(x,y))0xFxxx+Fyyx+Fzzx0Fx+Fzzx0(x0,y0,z0)Fz0zx=FxFzzy=FyFz

2.x2+y2+z24z=0,2zx2
:1:2x+2zzx4zx=0zx=x2zx2+2(zx)2+2z2zx242zx2=02zx2=1+(zx)22z=(2z)2+x2(2z)32F(x,y,z)=x2+y2+z24z=0zx=FxFz=2x2z4=x2z2zx2=x(x2z)=(x)(2z)x(2z)(2z)2=1(2z)+xzx(2z)2=1(2z)+xx2z(2z)2=(2z)2+x2(2z)3

内容小结
1.隐函数存在定理
2.隐函数求导方法
方法1.利用复合函数求导法则直接计算;
方法2.代公式
方法1.利用复合函数求导法则直接计算;
方法2.代公式

练习
1.x+y=xeyy=y(x)
F(x,y)=x+yxey=0Fx(x,y)=1eyFy(x,y)=1xeydydx=FxFy=1ey1xey2:x1+y=ey+xeyyy=ey11xey

2.x+y+z=ezz=z(x,y)
:F(x,y,z)=x+y+zez=0Fx(x,y,z)=1Fy(x,y,z)=1Fz(x,y,z)=1ezzx=FxFz=1ez1zy=FyFz=1ez1

3.x2z+2y2z2+y=0z=z(x,y)
:F(x,y,z)=x2z+2y2z2+yFx=2xzFy=4yz2+1Fz=x2+4y2zzx=FxFz=2xzx2+4y2zzy=FyFz=4yz2+1x2+4y2z2x2xz+x2zx+4yz2yx+4y2zzx+yx=02xz+(x2+4y2z)zx=0zx=2xzx2+4y2zy2xzxy+x2zx+4yz2+4y2zzy+1=0(x2+4y2z)zy+4yz2+1=0zy=4yz2+1x2+4y2z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值