python机器学习案例系列教程——极大似然估计、EM算法

全栈工程师开发手册 (作者:栾鹏)

python数据挖掘系列教程

极大似然

极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法。

也就是求使得似然函数最大的代估参数的值。而似然函数就是如果参数已知则已出现样本出现的概率

比如,我们想了解抛硬币是正面(head)的概率分布 θ θ θ;那么可以通过最大似然估计方法求得。

θ ^ = a r g m a x x l ( θ ) = a r g m a x x θ 8 ( 1 − θ ) 2 \hat{θ} =argmax_x l(θ)=argmax_x θ^8 (1−θ)^2 θ^=argmaxxl(θ)=argmaxxθ8(1θ)2

其中, l ( θ ) l(θ) l(θ)为观测变量序列的似然函数。

所以最大似然方法估计参数,就是先假设参数已知,然后用参数,求出样本出现的概率。如果是多个样本,就是多个样本的联合概率最大

求解使似然函数最大的代估参数,常规的做法就是对似然函数求导,求使导数为0的自变量的值,以及左右边界线的值。

例如

l ( θ ) l(θ) l(θ)求偏导

∂ l ( θ ) ∂ θ = θ 7 ( 1 − θ ) ( 8 − 10 θ ) ⇒ θ ^ = 0.8 \frac{∂l(θ)}{∂θ} =θ^7 (1−θ)(8−10θ)⇒\hat{θ} =0.8 θl(θ)=θ7(1θ)(810θ)θ^=0.8

但是如果似然函数不是凹函数(concave),求解极大值困难。一般地,使用与之具有相同单调性的log-likelihood,如图所示也就是将似然函数求log。

这里写图片描述

所谓的凹函数和凸函数,凹函数斜率逐渐减小,凸函数斜率逐渐增大。所以凹函数“容易”求解极大值(极值为0时),凸函数“容易”求解极小值(极值为0时)。

EM算法

EM算法(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法。所谓隐变量,是指我们没有办法观测到的变量。比如,有两枚硬币A、B,每一次随机取一枚进行抛掷,我们只能观测到硬币的正面与反面,而不能观测到每一次取的硬币是否为A;则称每一次的选择抛掷硬币为隐变量。

用Y表示观测数据,Z表示隐变量;Y和Z连在一起称为完全数据( complete-data ),观测数据Y又称为不完全数据(incomplete-data)。观测数据的似然函数:
P ( Y ∣ θ ) = ∑ z P ( Z ∣ θ ) P ( Y ∣ Z , θ ) P(Y|θ)=∑ _z P(Z|θ)P(Y|Z,θ) P(Yθ)=zP(Zθ)P(YZ,θ)

求模型参数的极大似然估计:

θ ^ = a r g m a x θ l o g P ( Y ∣ θ ) \hat{θ} =argmax_{θ} logP(Y|θ) θ^=argmaxθlogP(Yθ)

因为含有隐变量,此问题无法求解。因此,Dempster等人提出EM算法用于迭代求解近似解。

所以EM算法是一种特殊情况下的最大似然求解方法。

EM算法比较简单,分为两个步骤:

  • E步(E-step),以当前参数 θ ( i ) θ^{(i)} θ(i) 计算 Z Z Z的期望值。因为期望值中不再包含未知的隐含变量Z,所以是可以计算的。

Q ( θ , θ ( i ) ) = E Z [ l o g P ( Y , X ∣ θ ) ∣ Y , θ ( i ) ] Q(θ,θ^{(i)} )=E_Z [logP(Y,X|θ)|Y,θ^{(i)} ] Q(θ,θ(i))=EZ[logP(Y,Xθ)Y,θ(i)]

  • M步(M-step),求使 Q ( θ , θ ( i ) ) Q(θ,θ^{(i)}) Q(θ,θ(i))极大化的 θ θ θ,确定第 i + 1 i+1 i+1次迭代的参数的估计值 θ ( i + 1 ) θ^{(i+1)} θ(i+1)

θ ( i + 1 ) = a r g m a x θ Q ( θ , θ ( i ) ) θ^{(i+1)} =argmax_θ Q(θ,θ^{(i)} ) θ(i+1)=argmaxθQ(θ,θ(i))

如此迭代直至算法收敛。

案例

如图所示,有两枚硬币A、B,每一个实验随机取一枚抛掷10次,共5个实验,我们可以观测到每一次所取的硬币,估计参数A、B为正面的概率 θ = ( θ A , θ B ) θ=(θ_A ,θ_B ) θ=(θA,θB) ,根据极大似然估计求解。

这里写图片描述

如果我们不能观测到每一次所取的硬币,只能用EM算法估计模型参数,算法流程如图所示:

这里写图片描述

隐变量 Z Z Z为每次实验中选择A或B的概率,并初始化A为正面的概率为0.6,B为正面的概率为0.5。实验进行了5次。每次都要进行一遍EM操作。每次都要计算隐含变量。取A的概率,和取B的概率。然后更新代估参数 θ A θ_A θA(A为正面的概率)和 θ B θ_B θB(B为正面的概率)的值。

在初始化 θ A = 0.6 θ_A=0.6 θA=0.6 θ B = 0.5 θ_B=0.5 θB=0.5后第一次实验后计算隐含变量(选择A的概率)为

P ( z 1 = A ∣ y 1 , θ 0 ) = z 1 为 A 的 话 , 样 本 结 果 出 现 的 概 率 z 1 为 任 何 可 取 值 的 话 , 样 本 结 果 出 现 的 概 率 = P ( z 1 = A ∣ y 1 , θ 0 ) P ( z 1 = A ∣ y 1 , θ 0 ) + P ( z 1 = B ∣ y 1 , θ 0 ) = 0. 6 5 ∗ 0. 4 5 0. 6 5 ∗ 0. 4 5 + 0. 5 10 = 0.45 P(z_1 =A|y_1 ,θ^0)=\frac{z_1为A的话,样本结果出现的概率}{z_1为任何可取值的话,样本结果出现的概率}=\frac{P(z_1 =A|y_1 ,θ^0)} { P(z_1 =A|y_1 ,θ^0)+P(z_1 =B|y_1 ,θ^0) }=\frac{0.6^5 ∗0.4^5}{0.6^5 ∗0.4^5 +0.5^{10}} =0.45 P(z1=Ay1,θ0)=z1z1A=P(z1=Ay1,θ0)+P(z1=By1,θ0)P(z1=Ay1,θ0)=0.650.45+0.5100.650.45=0.45

按照上面的计算方法可依次求出其他隐含变量 Z Z Z,然后计算极大化的 θ ( i ) θ^{(i)} θ(i)。经过10次迭代,最终收敛。

K均值聚类和EM算法

K均值聚类是无监督的聚类算法。
关于k均值聚类不了解的可以参考:https://blog.csdn.net/luanpeng825485697/article/details/78993977

k均值聚类的目的就是为了是下面的损失函数最小

J ( c , u ) = ∑ i = 1 m ∣ ∣ x i − u c i ∣ ∣ J(c,u)=\sum_{i=1}^m||x_i-u_{c_i}|| J(c,u)=i=1mxiuci

其中m为样本个数, x i x_i xi表示第 i i i个样本, c i c_i ci表示第第i个样本所属的聚类, u c i u_{c_i} uci表示第i个样本所属的聚类的质心。

假设当前 J J J没有达到最小值,那么首先可以固定每个类的质心 u j u_j uj,调整每个样例的所属的类别 c j c_j cj来让 J J J函数减少,同样,固定 c j c_j cj,调整每个类的质心 u j u_j uj也可以使 J J J减小。这两个过程就是内循环中使 J J J单调递减的过程。当 J J J递减到最小时, u u u c c c也同时收敛。

K-means与EM的关系

首先回到初始问题,我们目的是将样本分成K个类,其实说白了就是求一个样本的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定的好不好呢?

我们使用样本的极大似然估计来度量,这里就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。

这个过程有几个难点:

第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。(kmean中是硬指定,距离哪个聚类近就属于哪个聚类)

第二如何估计 P ( x , y ) P(x,y) P(x,y) P ( x , y ) P(x,y) P(x,y)还可能依赖很多其他参数,如何调整里面的参数让 P ( x , y ) P(x,y) P(x,y)最大。( J J J函数最小来代替 P ( x , y ) P(x,y) P(x,y)最大,我们可以将这些参数写成 θ θ θ,更简单的理解 θ θ θ就是k个质心的选择)

按照EM算法思想: E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计 P ( x , y ) P(x,y) P(x,y)能够达到极大值。然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。

E步(E-step),以当前参数 θ θ θ计算 Z Z Z的期望值。也就是确定隐含类别变量 c c c,样本所属的分类。我们固定每个类的中心,通过对每一个样本选择最近的分类,以此优化目标函数。

M步(M-step),以当前 Z Z Z的值计算使 P ( x , y ) P(x,y) P(x,y)最大的 θ θ θ。求使 J J J函数最小的 u u u,也就是求每个聚类的质心。重新更新每个类的中心点,该步骤可以通过对目标函数求导实现求解 θ θ θ,最终可得新的类中心就是类中样本的均值。

这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例(距离哪个聚类近就属于哪个聚类),而不是对每个类别赋予不同的概率。

  • 6
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

腾讯AI架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值