《Improved adaptive Gausian mixture model for background subtraction》

这篇文章基于《Adaptive background mixture models for real-time tracking》进行了改进,最主要的改进点在于通过最大后验估计法引入先验概率的影响,而不是直接通过最大似然估计法求解概率分布参数。这样做的效果之一就是作者后续操作中把权值减小至负数的分布舍弃掉,实现了混合高斯模型中分布个数的自适应。老规矩,这里贴上个人翻译内容,原文+翻译PDF点击打开链接这里下载。











参考文章链接:

http://blog.csdn.net/u011240016/article/details/52730807 全概公式和贝叶斯公式的理解
http://maider.blog.sohu.com/306392863.html 如何理解Beta分布和Dirichlet分布?
http://blog.csdn.net/baimafujinji/article/details/51374202 先验概率、后验概率以及共轭先验
https://www.cnblogs.com/chyl411/p/5763952.html 拉格朗日乘法学习笔记

  • 23
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
为评估生成模型的改进精确度和召回率指标,首先需要理解生成模型的基本概念。生成模型是一种用于根据给定的输入数据生成新样本的机器学习模型。它可以学习数据的分布,并生成与训练数据相似的新样本。 精确度和召回率是评估模型性能的重要指标。精确度衡量模型生成的样本中正确样本的比例,而召回率衡量模型是否能够完整地生成真实样本的比例。 对于评估生成模型的精确度和召回率,可以考虑以下改进指标: 1. 平均精确度:除了计算总体精确度外,还可以计算每个类别的精确度,并求其平均值。这可以帮助我们了解模型在不同类别上的性能差异,并对结果进行更精细的分析。 2. 样本多样性:在评估生成模型时,除了关注精确度和召回率,还应注意样本生成的多样性。生成模型应该能够生成多样化的样本,而不仅仅是在训练数据上的复制。我们可以使用多样性指标,如样本覆盖率和互信息来衡量生成样本的多样性。 3. 异常检测:生成模型应能够生成稀有或异常样本。因此,我们可以引入一个异常检测指标,例如生成模型中的KL散度,以评估模型对于异常样本的生成能力。 4. 推断速度:对于生成模型的评估,推断速度也是一个重要的指标。快速的推断能力可以提高模型的实时性,使其适用于许多实际应用。 通过引入这些改进指标,我们可以更全面地评估生成模型的性能。这些指标可以提供有关模型的精确度、召回率、样本多样性、异常检测和推断速度等方面的信息,帮助我们更好地了解生成模型的潜力和局限性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值